
Communications System Toolbox™

User's Guide

R2016b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Communications System Toolbox™ User's Guide
© COPYRIGHT 2011–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

April 2011 First printing New for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 5.6 (Release 2014a)
October 2014 Online only Revised for Version 5.7 (Release 2014b)
March 2015 Online only Revised for Version 6.0 (Release 2015a)
September 2015 Online only Revised for Version 6.1 (Release 2015b)
March 2016 Online only Revised for Version 6.2 (Release 2016a)
September 2016 Online only Revised for Version 6.3 (Release 2016b)

Contents

Input, Output, and Display
1

Signal Terminology . 1-2
Matrices, Vectors, and Scalars . 1-2

Export Data to MATLAB . 1-3
Use a Signal To Workspace Block . 1-3
Configure the Signal To Workspace Block 1-3
View Error Rate Data in Workspace 1-4
Send Signal and Error Data to Workspace 1-4
View Signal and Error Data in Workspace 1-5
Analyze Signal and Error Data . 1-6

Sources and Sinks . 1-7
Data sources . 1-7
Noise Sources . 1-10
Sequence Generators . 1-11
Scopes . 1-13
View a Sinusoid . 1-14
View a Modulated Signal . 1-17

Support SDR Hardware . 1-25

Transmit and Receive Signals Over the Air with Software
Defined Radios . 1-26

Data and Signal Management
2

Matrices, Vectors, and Scalars . 2-2
Processing Rules . 2-2

v

Sample-Based and Frame-Based Processing 2-4

Floating-Point and Fixed-Point Data Types 2-5
Access the Block Support Table . 2-5

Delays . 2-6
Section Overview . 2-6
Sources of Delays . 2-7
ADSL Example Model . 2-7
Punctured Coding Model . 2-9
Use the Find Delay and Align Signals Blocks 2-12

Digital Modulation
3

Phase Modulation . 3-2
Baseband and Passband Simulation 3-3
BPSK . 3-4
QPSK . 3-6
Higher-Order PSK . 3-10
DPSK . 3-12
OQPSK . 3-13
Soft-Decision Demodulation . 3-16

Featured Examples
4

Compensate for Frequency Offset Using Coarse and Fine
Compensation . 4-2

Correct for Symbol Timing and Doppler Offsets 4-7

Estimate Turbo Code BER Performance in AWGN 4-12

Random Noise Generators . 4-16

Visualize Effects of Frequency-Selective Fading 4-21

vi Contents

Correct Frequency Offset QAM Using Coarse and Fine
Synchronization . 4-38

Adjust Carrier Synchronizer Damping Factor to Correct
Frequency Offset . 4-42

Modulate and Demodulate 8-PSK Signal 4-47

Binary to Gray Conversion in Simulink 4-50

Read Baseband Signal from File . 4-51

Write Baseband Signal to File . 4-54

Detect Binary Preamble in Packet . 4-56

Detect Complex Preamble in Packet 4-57

Adaptive Equalizer Examples
5

Adaptive Equalization . 5-2

Adaptive Equalization . 5-13
Structure of the Example . 5-13
Experimenting with the Example . 5-14
Results and Displays . 5-15
Selected Bibliography . 5-23

Equalize BSPK Signal . 5-25

Compare RLS and LMS Algorithms 5-29

vii

System Design
6

Source Coding . 6-2
Represent Partitions . 6-2
Represent Codebooks . 6-3
Determine Which Interval Each Input Is In 6-3
Optimize Quantization Parameters . 6-4
Differential Pulse Code Modulation . 6-5
Optimize DPCM Parameters . 6-7
Compand a Signal . 6-8
Huffman Coding . 6-10
Arithmetic Coding . 6-12
Quantize a Signal . 6-13

Error Detection and Correction . 6-15
Cyclic Redundancy Check Codes . 6-15
Block Codes . 6-19
Convolutional Codes . 6-37
Linear Block Codes . 6-69
Hamming Codes . 6-79
BCH Codes . 6-88
Reed-Solomon Codes . 6-95
LDPC Codes . 6-106
Galois Field Computations . 6-106
Galois Fields of Odd Characteristic 6-137

Interleaving . 6-153
Block Interleaving . 6-153
Convolutional Interleaving . 6-158
Selected Bibliography for Interleaving 6-170

Digital Modulation . 6-171
Digital Modulation Features . 6-171
Signals and Delays . 6-177
PM Modulation . 6-186
AM Modulation . 6-187
CPM Modulation . 6-193
Exact LLR Algorithm . 6-196
Approximate LLR Algorithm . 6-197
Delays in Digital Modulation . 6-197
Selected Bibliography for Digital Modulation 6-199

viii Contents

Analog Passband Modulation . 6-201
Analog Modulation Features . 6-201
Represent Signals for Analog Modulation 6-202
Sampling Issues in Analog Modulation 6-205
Filter Design Issues . 6-205

Phase-Locked Loops . 6-208
Phase-Locked Loop Features . 6-208
Selected Bibliography for Synchronization 6-210

Equalization . 6-212
Equalization Features . 6-212
Equalize A Signal . 6-213
Equalizer Structure . 6-214
Adaptive Algorithms . 6-222
MLSE Equalizers . 6-239
Selected Bibliography for Equalizers 6-246

Multiple-Input Multiple-Output (MIMO) 6-248
Orthogonal Space-Time Block Codes (OSTBC) 6-248
MIMO Fading Channel . 6-249
MIMO Examples . 6-249
OSTBC Over 3x2 Rayleigh Fading Channel 6-250
Selected Bibliography for MIMO systems 6-253

Huffman Coding . 6-255
Create a Huffman Code Dictionary 6-255
Create and Decode a Huffman Code 6-256

Differential Pulse Code Modulation 6-258
Section Overview . 6-258
DPCM Terminology . 6-258
Represent Predictors . 6-258
Example: DPCM Encoding and Decoding 6-259
Optimize DPCM Parameters . 6-260

Compand a Signal . 6-262
Quantize and Compand an Exponential Signal 6-262

Arithmetic Coding . 6-264
Represent Arithmetic Coding Parameters 6-264
Create and Decode an Arithmetic Code 6-264

ix

Quantization . 6-266
Represent Partitions . 6-266
Represent Codebooks . 6-266
Determine Which Interval Each Input Is In 6-267
Optimize Quantization Parameters 6-267
Quantize a Signal . 6-269

OFDM Modulation
7

OFDM with User-Specified Pilot Indices 7-2

SER Simulation for OFDM Link . 7-7

OFDM with MIMO Simulation . 7-10

Gray Coded 8-PSK . 7-15
Introduction . 7-15
Initialization . 7-17
Stream Processing Loop . 7-19
Cleanup . 7-20
Conclusions . 7-20

Configure Eb/No for AWGN Channels with Coding 7-23

CPM Phase Tree . 7-25
Structure of the Example . 7-25
Results and Displays . 7-26
Exploring the Example . 7-28

Filtered QPSK vs. MSK . 7-29
Structure of the Example . 7-29
Results and Displays . 7-30

GMSK vs. MSK . 7-33
Structure of the Example . 7-33
Results and Displays . 7-34

GMSK vs. MSK . 7-37

x Contents

Gray Coded 8-PSK . 7-43
Structure of the Example . 7-43
Gray-Coded M-PSK Modulation . 7-44
Exploring the Example . 7-46
Simulation Results . 7-47
Comparison with Pure Binary Coding and Theory 7-48

Soft Decision GMSK Demodulator . 7-49
Structure of the Example . 7-49
The Serial GMSK Receiver . 7-50
Results and Displays . 7-51

16-PSK with Custom Symbol Mapping 7-56

General QAM Modulation in an AWGN Channel 7-60

FM Modulate and Demodulate a Sinusoidal Signal 7-63

Modulate and Demodulate a Streaming Audio Signal 7-66

MSK
8

MSK Signal Recovery . 8-2

MSK Signal Recovery . 8-11
Exploring the Model . 8-11
Results and Displays . 8-12
Experimenting with the Example . 8-15

Reed-Solomon Coding
9

Reed-Solomon Coding Part I – Erasures 9-2

Reed-Solomon Coding Part II – Punctures 9-8

xi

Reed-Solomon Coding Part III – Shortening 9-14

Reed-Solomon Coding with Erasures, Punctures, and
Shortening . 9-20

Decoding with Receiver Generated Erasures 9-20
Simulation and Visualization with Erasures Only 9-21
BER Performance with Erasures Only 9-24
Simulation with Erasures and Punctures 9-25
BER Performance with Erasures and Punctures 9-26
Specifying a Shortened Code . 9-26
Simulation with Erasures, Punctures, and Shortening 9-27
BER Performance with Erasures, Punctures, and Shortening 9-27
Further Exploration . 9-28

Estimate LDPC Performance in AWGN 9-29

Character Representation of Polynomials 9-31

Estimate BER of 8-PSK in AWGN with Reed-Solomon
Coding . 9-32

Transmit and Receive Shortened Reed-Solomon Codes . . . 9-35

Galois Fields
10

Working with Galois Fields . 10-2
Creating Galois Field Arrays . 10-2
Using Galois Field Arrays . 10-2
Arithmetic in Galois Fields . 10-3
Using MATLAB® Functions with Galois Arrays 10-4
Hamming Code Example . 10-5

Convolutional Coding
11

Punctured Convolutional Coding . 11-2

xii Contents

Iterative Decoding of a Serially Concatenated Convolutional
Code . 11-8

Exploring the Example . 11-8
Variables in the Example . 11-9
Creating a Serially Concatenated Code 11-10
Convolutional Encoding Details . 11-10
Decoding Using an Iterative Process 11-11
Computations in Each Iteration . 11-11
Results of the Iterative Loop . 11-12
Results and Displays . 11-12

Punctured Convolutional Encoding 11-14
Structure of the Example . 11-14
Generating Random Data . 11-15
Convolutional Encoding with Puncturing 11-15
Transmitting Data . 11-16
Demodulating . 11-16
Viterbi Decoding of Punctured Codes 11-16
Calculating the Error Rate . 11-17
Evaluating Results . 11-17

Rate 2/3 Convolutional Code in AWGN 11-21

Estimate BER for Hard and Soft Decision Viterbi
Decoding . 11-24

Channel Modeling and RF Impairments
12

AWGN Channel . 12-2
Section Overview . 12-2
AWGN Channel Noise Level . 12-2

Fading Channels . 12-5
Overview of Fading Channels . 12-5
Methodology for Simulating Multipath Fading Channels: . . 12-8
Specify Fading Channels . 12-12
Specify Doppler Spectrum of Fading Channel 12-16
Configure Channel Objects . 12-20
Use Fading Channels . 12-23

xiii

Rayleigh Fading Channel . 12-24
Rician Fading Channel . 12-43
Additional Examples Using Fading Channels 12-45

MIMO Channel . 12-47

RF Impairments . 12-48
Illustrate RF Impairments That Distort a Signal 12-48
Phase/Frequency Offsets and Phase Noise 12-52
Receiver Thermal Noise and Free Space Path Loss 12-52
Nonlinearity and I/Q Imbalance . 12-53
Apply Nonlinear Distortion to Input Signal 12-53
Simulate RF Impairments to a DQPSK Signal 12-54
View Phase Noise Effects on Signal Spectrum 12-57
Selected Bibliography for Channel Modeling 12-60

Measurements
13

Bit Error Rate (BER) . 13-2
Theoretical Results . 13-2
Performance Results via Simulation 13-24
Performance Results via the Semianalytic Technique 13-27
Theoretical Performance Results . 13-30
Error Rate Plots . 13-34
BERTool . 13-39
Error Rate Test Console . 13-88

Error Vector Magnitude (EVM) . 13-123
Measuring Modulator Accuracy . 13-123

Modulation Error Ratio (MER) . 13-128

Adjacent Channel Power Ratio (ACPR) 13-129
Obtain ACPR Measurements . 13-129

Complementary Cumulative Distribution Function CCDF 13-137

Selected Bibliography for Measurements 13-138

xiv Contents

Filtering Section
14

Filtering . 14-2
Filter Features . 14-2
Selected Bibliography Filtering . 14-4

Group Delay . 14-5
Implications of Delay for Simulations 14-5

Pulse Shaping Using a Raised Cosine Filter 14-7

Design Raised Cosine Filters Using MATLAB Functions . 14-13
Section Overview . 14-13
Example Designing a Square-Root Raised Cosine Filter . . 14-13

Filter Using Simulink Raised Cosine Filter Blocks 14-15
Combining Two Square-Root Raised Cosine Filters 14-15

Design Raised Cosine Filters in Simulink 14-21

Reduce ISI Using Raised Cosine Filtering 14-24

Find Delay for Encoded and Filtered Signal 14-29

Visual Analysis
15

Constellation Visualization . 15-2
Observe Modulator Design Affect Signal Constellation 15-2

Plot Signal Constellations . 15-9
Create 16-PSK Constellation Diagram 15-9
Create 32-QAM Constellation Diagram 15-10
Create 8-QAM Gray Coded Constellation Diagram 15-11
Plot a Triangular Constellation for QAM 15-12

Eye Diagram Analysis . 15-15
Import Eye Diagrams and Compare Measurement Results 15-15

xv

Scatter Plots and Constellation Diagrams 15-21
View Signals Using Constellation Diagrams 15-21
Illustrate How RF Impairments Distort Signal 15-27

Channel Visualization . 15-30
The Channel Visualization GUI . 15-31
Visualize Samples Within a Frame 15-42
Animate Snapshots Across Frames 15-42

Visualize RF Impairments . 15-44

C Code Generation
16

Understanding C Code Generation . 16-2
C Code Generation with the Simulink Coder Product 16-2
Highly Optimized Generated ANSI C Code 16-2

C Code Generation from MATLAB . 16-4
What is C Code Generation from MATLAB? 16-4

C Code Generation with System Objects and Functions . . . 16-5

HDL Code Generation
17

HDL Code Generation Support for Communications System
Toolbox . 17-2

Blocks . 17-2
System Objects . 17-3

Find Blocks and System Objects Supporting HDL Code
Generation . 17-5

Blocks . 17-5
System Objects . 17-5

xvi Contents

Simulation Acceleration
18

Simulation Acceleration Using GPUs 18-2
GPU-Based System objects . 18-2
General Guidelines for Using GPUs 18-3
Transmit and decode using BPSK modulation and turbo

coding . 18-3
Process Multiple Data Frames Using a GPU 18-4
Process Multiple Data Frames Using NumFrames Property 18-5
gpuArray and Regular MATLAB Numerical Arrays 18-6
Pass gpuArray as an Input . 18-7
System Block Support for GPU System Objects 18-7

Define New System Objects
19

Define Basic System Objects . 19-3

Change Number of Inputs or Outputs 19-5

Validate Property and Input Values 19-9

Set Property Values at Construction Time 19-12

Reset Algorithm State . 19-14

Define Property Attributes . 19-16

Hide Inactive Properties . 19-20

Limit Property Values to Finite List 19-22

Process Tuned Properties . 19-25

Release System Object Resources . 19-27

Define Composite System Objects . 19-29

xvii

Define Finite Source Objects . 19-32

Save System Object . 19-34

Load System Object . 19-37

Define System Object Information 19-41

Add Data Types Tab to MATLAB System Block 19-43

Add Button to MATLAB System Block 19-45

Specify Locked Input Size . 19-48

Set Model Reference Discrete Sample Time Inheritance . 19-50

System Object Input Arguments and ~ in Code Examples 19-52

What Are Mixin Classes? . 19-53

Insert System Object Code Using MATLAB Editor 19-54
Define System Objects with Code Insertion 19-54
Create Fahrenheit Temperature String Set 19-57
Create Custom Property for Freezing Point 19-58
Define Input Size As Locked . 19-59

Analyze System Object Code . 19-61
View and Navigate System object Code 19-61
Example: Go to StepImpl Method Using Analyzer 19-61

Define System Object for Use in Simulink 19-64
Develop System Object for Use in System Block 19-64
Define Block Dialog Box for Plot Ramp 19-65

Use Enumerations in System Objects 19-70

Use Global Variables in System Objects 19-71
System Object Global Variables in MATLAB 19-71
System Object Global Variables in Simulink 19-71

xviii Contents

1

Input, Output, and Display

Learn how to input, output and display data and signals with Communications System
Toolbox.

• “Signal Terminology” on page 1-2
• “Export Data to MATLAB” on page 1-3
• “Sources and Sinks” on page 1-7
• “Support SDR Hardware” on page 1-25
• “Transmit and Receive Signals Over the Air with Software Defined Radios” on page

1-26

1 Input, Output, and Display

Signal Terminology

This section defines important Communications System Toolbox terms related to
matrices, vectors, and scalars, as well as frame-based and sample-based processing.

Matrices, Vectors, and Scalars

This document uses the unqualified words scalar and vector in ways that emphasize a
signal's number of elements, not its strict dimension properties:

• A scalar signal contains a single element. The signal could be a one-dimensional array
with one element, or a matrix of size 1-by-1.

• A vector signal contains one or more elements, arranged in a series. The signal
could be a one-dimensional array, a matrix that has exactly one column, or a matrix
that has exactly one row. The number of elements in a vector is called its length or,
sometimes, its width.

In cases when it is important for a description or schematic to distinguish among
different types of scalar signals or different types of vector signals, this document
mentions the distinctions explicitly. For example, the terms one-dimensional array,
column vector, and row vector distinguish among three types of vector signals.

The size of a matrix is the pair of numbers that indicate how many rows and columns
the matrix has. The orientation of a two-dimensional vector is its status as either a row
vector or column vector. A one-dimensional array has no orientation – this is sometimes
called an unoriented vector.

A matrix signal that has more than one row and more than one column is called a full
matrix signal.

1-2

 Export Data to MATLAB

Export Data to MATLAB

In this section...

“Use a Signal To Workspace Block” on page 1-3
“Configure the Signal To Workspace Block” on page 1-3
“View Error Rate Data in Workspace” on page 1-4
“Send Signal and Error Data to Workspace” on page 1-4
“View Signal and Error Data in Workspace” on page 1-5
“Analyze Signal and Error Data” on page 1-6

Use a Signal To Workspace Block

This section explains how to send data from a Simulink® model to the MATLAB®

workspace so you can analyze the results of simulations in greater detail.

You can use a Signal To Workspace block, from the Sinks library of the DSP System
Toolbox™ product to send data to the MATLAB workspace as a vector. For example,
you can send the error rate data from the Hamming code model, described in the section
“Reduce the Error Rate Using a Hamming Code” on page 6-80. To insert a Signal to
Workspace block into the model, follow these steps:

1 Type doc_hamming at the MATLAB Help browser to open the model.
2 Drag a Signal To Workspace block, from the Sinks library in the DSP System

Toolbox product, into the model window and connect it as shown in the following
figure.

Hamming Code Model with a Signal To Workspace Block

Configure the Signal To Workspace Block

To configure the Signal to Workspace block, follow these steps:

1-3

1 Input, Output, and Display

1 Double-click the block to display its dialog box.
2 Type hammcode_BER in the Variable name field.
3 Type 1 in the Limit data points to last field. This limits the output vector to the

values at the final time step of the simulation.
4 Click OK.

When you run a simulation, the model sends the output of the Error Rate Calculation
block to the workspace as a vector of size 3, called hamming_BER. The entries of this
vector are the same as those shown by the Error Rate Display block.

View Error Rate Data in Workspace

After running a simulation, you can view the output of the Signal to Workspace block by
typing the following commands at the MATLAB prompt:

format short e

hammcode_BER

The vector output is the following:

hammcode_BER =

5.4066e-003 1.0000e+002 1.8496e+004

The command format short e displays the entries of the vector in exponential form.
The entries are as follows:

• The first entry is the error rate.
• The second entry is the total number of errors.
• The third entry is the total number of comparisons made.

Send Signal and Error Data to Workspace

To analyze the error-correction performance of the Hamming code, send the transmitted
signal, the received signal, and the error vectors, created by the Binary Symmetric
Channel block, to the workspace. An example of this is shown in the following figure.

1-4

 Export Data to MATLAB

Send Signal and Error Data to the Workspace

1 To open the model shown in the previous figure, type doc_channel at the MATLAB
command line.

2 Double-click the Binary Symmetric Channel block to open its dialog box, and select
Output error vector. This creates an output port for the error data.

3 Drag three Signal To Workspace blocks, from the Sinks library in the DSP System
Toolbox product, into the model window and connect them as shown in the preceding
figure.

4 Double-click the left Signal To Workspace block.

• Type Tx in the Variable name field in the block's dialog box. The block sends the
transmitted signal to the workspace as an array called Tx.

• In the Frames field, select Log frames separately (3-D array). This
preserves each frame as a separate column of the array Tx.

• Click OK.
5 Double-click the middle Signal To Workspace block:

• Type errors in the Variable name field.
• In the Frames field, select Log frames separately (3-D array).
• Click OK.

6 Double-click the right Signal To Workspace block:

• Type Rx in the Variable name field.
• In the Frames field, select Log frames separately (3-D array).
• Click OK.

View Signal and Error Data in Workspace

After running a simulation, you can display individual frames of data. For example, to
display the tenth frame of Tx, at the MATLAB prompt type

1-5

1 Input, Output, and Display

Tx(:,:,10)

This returns a column vector of length 4, corresponding to the length of a message word.
Usually, you should not type Tx by itself, because this displays the entire transmitted
signal, which is very large.

To display the corresponding frame of errors, type

errors(:,:,10)

This returns a column vector of length 7, corresponding to the length of a codeword.

To display frames 1 through 5 of the transmitted signal, type

Tx(:,:,1:5)

Analyze Signal and Error Data

You can use MATLAB to analyze the data from a simulation. For example, to identify the
differences between the transmitted and received signals, type

diffs = Tx~=Rx;

The vector diffs is the XOR of the vectors Tx and Rx. A 1 in diffs indicates that Tx
and Rx differ at that position.

You can determine the indices of frames corresponding to message words that are
incorrectly decoded with the following MATLAB command:

error_indices = find(diffs);

A 1 in the vector not_equal indicates that there is at least one difference between the
corresponding frame of Tx and Rx. The vector error_indices records the indices where
Tx and Rx differ. To view the first incorrectly decoded word, type

Tx(:,:,error_indices(1))

To view the corresponding frame of errors, type

errors(:,:,error_indices(1))

Analyze this data to determine the error patterns that lead to incorrect decoding.

1-6

 Sources and Sinks

Sources and Sinks
Communications System Toolbox provides sinks and display devices that facilitate
analysis of communication system performance. You can implement devices using either
System objects, blocks, or functions.

In this section...

“Data sources” on page 1-7
“Noise Sources” on page 1-10
“Sequence Generators” on page 1-11
“Scopes” on page 1-13
“View a Sinusoid” on page 1-14
“View a Modulated Signal” on page 1-17

Data sources

You can use blocks or functions to generate random data to simulate a signal source.
In addition, you can use Simulink blocks such as the Random Number block as a data
source. You can open the Random Data Sources sublibrary by double-clicking its icon
(found in the Comm Sources library of the main Communications System Toolbox block
library).

Random Symbols

The randsrc function generates random matrices whose entries are chosen
independently from an alphabet that you specify, with a distribution that you specify. A
special case generates bipolar matrices.

For example, the command below generates a 5-by-4 matrix whose entries are
independently chosen and uniformly distributed in the set {1,3,5}. (Your results might
vary because these are random numbers.)

a = randsrc(5,4,[1,3,5])

a =

 3 5 1 5

 1 5 3 3

 1 3 3 1

 1 1 3 5

1-7

1 Input, Output, and Display

 3 1 1 3

If you want 1 to be twice as likely to occur as either 3 or 5, use the command below to
prescribe the skewed distribution. The third input argument has two rows, one of which
indicates the possible values of b and the other indicates the probability of each value.

b = randsrc(5,4,[1,3,5; .5,.25,.25])

b =

 3 3 5 1

 1 1 1 1

 1 5 1 1

 1 3 1 3

 3 1 3 1

Random Integers

In MATLAB, the randi function generates random integer matrices whose entries are in
a range that you specify. A special case generates random binary matrices.

For example, the command below generates a 5-by-4 matrix containing random integers
between 2 and 10.

c = randi([2,10],5,4)

c =

 2 4 4 6

 4 5 10 5

 9 7 10 8

 5 5 2 3

 10 3 4 10

If your desired range is [0,10] instead of [2,10], you can use either of the commands
below. They produce different numerical results, but use the same distribution.

d = randi([0,10],5,4);

e = randi([0 10],5,4);

In Simulink, the Random Integer Generator and Poisson Integer Generator
blocks both generate vectors containing random nonnegative integers. The Random
Integer Generator block uses a uniform distribution on a bounded range that you specify
in the block mask. The Poisson Integer Generator block uses a Poisson distribution to
determine its output. In particular, the output can include any nonnegative integer.

1-8

 Sources and Sinks

Random Bit Error Patterns

In MATLAB, the randerr function generates matrices whose entries are either 0 or 1.
However, its options are different from those of randi, because randerr is meant for
testing error-control coding. For example, the command below generates a 5-by-4 binary
matrix, where each row contains exactly one 1.

f = randerr(5,4)

f =

 0 0 1 0

 0 0 1 0

 0 1 0 0

 1 0 0 0

 0 0 1 0

You might use such a command to perturb a binary code that consists of five four-bit
codewords. Adding the random matrix f to your code matrix (modulo 2) introduces
exactly one error into each codeword.

On the other hand, to perturb each codeword by introducing one error with probability
0.4 and two errors with probability 0.6, use the command below instead.

% Each row has one '1' with probability 0.4, otherwise two '1's

g = randerr(5,4,[1,2; 0.4,0.6])

g =

 0 1 1 0

 0 1 0 0

 0 0 1 1

 1 0 1 0

 0 1 1 0

Note: The probability matrix that is the third argument of randerr affects only the
number of 1s in each row, not their placement.

As another application, you can generate an equiprobable binary 100-element column
vector using any of the commands below. The three commands produce different
numerical outputs, but use the same distribution. The third input arguments vary
according to each function's particular way of specifying its behavior.

1-9

1 Input, Output, and Display

binarymatrix1 = randsrc(100,1,[0 1]); % Possible values are 0,1.

binarymatrix2 = randi([0 1],100,1); % Two possible values

binarymatrix3 = randerr(100,1,[0 1;.5 .5]); % No 1s, or one 1

In Simulink, the Bernoulli Binary Generator block generates random bits and is
suitable for representing sources. The block considers each element of the signal to be an
independent Bernoulli random variable. Also, different elements need not be identically
distributed.

Noise Sources

Construct noise generator blocks in Simulink to simulate communication links.

Random Noise Generators

You can construct random noise generators to simulate channel noise by using the
MATLAB Function block with random number generating functions. Construct different
types of channel noise by using the following combinations.

Distribution Block Function

Gaussian MATLAB Function randn

Rayleigh MATLAB Function randn

Rician MATLAB Function randn

Uniform on a bounded
interval

MATLAB Function rand

See “Random Noise Generators” on page 4-16 for an example of how Rayleigh and
Rician distributed noise is created.

Gaussian Noise Generator

In MATLAB, the wgn function generates random matrices using a white Gaussian noise
distribution. You specify the power of the noise in either dBW (decibels relative to a
watt), dBm, or linear units. You can generate either real or complex noise.

For example, the command below generates a column vector of length 50 containing
real white Gaussian noise whose power is 2 dBW. The function assumes that the load
impedance is 1 ohm.

1-10

 Sources and Sinks

y1 = wgn(50,1,2);

To generate complex white Gaussian noise whose power is 2 watts, across a load of 60
ohms, use either of the commands below.

y2 = wgn(50,1,2,60,'complex','linear');

y3 = wgn(50,1,2,60,'linear','complex');

To send a signal through an additive white Gaussian noise channel, use the awgn
function. See “AWGN Channel” on page 12-2 for more information.

Sequence Generators

You can use blocks in the Sequence Generators sublibrary of the Communications
Sources library to generate sequences for spreading or synchronization in a
communication system. You can open the Sequence Generators sublibrary by double-
clicking its icon in the main Communications System Toolbox block library.

Blocks in the Sequence Generators sublibrary generate

• Pseudorandom sequences
• Synchronization codes
• Orthogonal codes

Pseudorandom Sequences

The following table lists the blocks that generate pseudorandom or pseudonoise (PN)
sequences. The applications of these sequences range from multiple-access spread
spectrum communication systems to ranging, synchronization, and data scrambling.

Sequence Block

Gold sequences Gold Sequence Generator

Kasami sequences Kasami Sequence Generator

PN sequences PN Sequence Generator

All three blocks use shift registers to generate pseudorandom sequences. The following is
a schematic diagram of a typical shift register.

1-11

1 Input, Output, and Display

m mm

+

g 1g r-1
g r-2

+ +

g r
g 0

Output

0r-1 r-2

All r registers in the generator update their values at each time step according to the
value of the incoming arrow to the shift register. The adders perform addition modulo
2. The shift register can be described by a binary polynomial in z, grzr + gr-1zr-1 + ... + g0.
The coefficient gi is 1 if there is a connection from the ith shift register to the adder, and
0 otherwise.

The Kasami Sequence Generator block and the PN Sequence Generator block use this
polynomial description for their Generator polynomial parameter, while the Gold
Sequence Generator block uses it for the Preferred polynomial [1] and Preferred
polynomial [2] parameters.

The lower half of the preceding diagram shows how the output sequence can be shifted by
a positive integer d, by delaying the output for d units of time. This is accomplished by a
single connection along the dth arrow in the lower half of the diagram.

1-12

 Sources and Sinks

Synchronization Codes

The Barker Code Generator block generates Barker codes to perform
synchronization. Barker codes are subsets of PN sequences. They are short codes, with
a length at most 13, which are low-correlation sidelobes. A correlation sidelobe is the
correlation of a codeword with a time-shifted version of itself.

Orthogonal Codes

Orthogonal codes are used for spreading to benefit from their perfect correlation
properties. When used in multi-user spread spectrum systems, where the receiver is
perfectly synchronized with the transmitter, the despreading operation is ideal.

Code Block

Hadamard codes Hadamard Code Generator

OVSF codes OVSF Code Generator

Walsh codes Walsh Code Generator

Scopes

The Comm Sinks block library contains scopes for viewing three types of signal plots:

• “Eye Diagrams” on page 1-13
• “Scatter Plots” on page 1-14
• “Signal Trajectories” on page 1-14

The following table lists the blocks and the plots they generate.

Block Name Plots

Eye Diagram Eye diagram of a signal
Constellation Diagram Constellation diagram and signal trajectory

of a signal

Eye Diagrams

An eye diagram is a simple and convenient tool for studying the effects of intersymbol
interference and other channel impairments in digital transmission. When this software

1-13

1 Input, Output, and Display

product constructs an eye diagram, it plots the received signal against time on a fixed-
interval axis. At the end of the fixed interval, it wraps around to the beginning of the
time axis. As a result, the diagram consists of many overlapping curves. One way to use
an eye diagram is to look for the place where the eye is most widely opened, and use that
point as the decision point when demapping a demodulated signal to recover a digital
message.

The Eye Diagram block produces eye diagrams. This block processes discrete-time
signals and periodically draws a line to indicate a decision, according to a mask
parameter.

Examples appear in “View a Sinusoid” on page 1-14 and “View a Modulated Signal”
on page 1-17.

Scatter Plots

A constellation diagram of a signal plots the signal's value at its decision points. In the
best case, the decision points should be at times when the eye of the signal's eye diagram
is the most widely open.

The Constellation Diagram block produces a constellation diagram from discrete-
time signals. An example appears in “View a Sinusoid” on page 1-14.

Signal Trajectories

A signal trajectory is a continuous plot of a signal over time. A signal trajectory differs
from a scatter plot in that the latter displays points on the signal trajectory at discrete
intervals of time.

The Constellation Diagram block produces signal trajectories. The Constellation
Diagram block produces signal trajectories when the ShowTrajectory property is set
to true. A signal trajectory connects all points of the input signal, irrespective of the
specified decimation factor (Samples per symbol)

View a Sinusoid

The following model produces a constellation diagram and an eye diagram from a
complex sinusoidal signal. Because the decision time interval is almost, but not exactly,
an integer multiple of the period of the sinusoid, the eye diagram exhibits drift over
time. More specifically, successive traces in the eye diagram and successive points in the
scatter diagram are near each other but do not overlap.

1-14

 Sources and Sinks

To open the model, enter doc_eyediagram at the MATLAB command line. To build the
model, gather and configure these blocks:

• Sine Wave, in the Sources library of the DSP System Toolbox (not the Sine Wave
block in the Simulink Sources library)

• Set Frequency to .502.
• Set Output complexity to Complex.
• Set Sample time to 1/16.

• Constellation Diagram, in the Comm Sinks library

• On the Constellation Properties panel, set Samples per symbol to 16.
• Eye Diagram, in the Comm Sinks library

• On the Plotting Properties panel, set Samples per symbol to 16.
• On the Figure Properties panel, set Scope position to figposition([42.5

55 35 35]);.

Connect the blocks as shown in the preceding figure. From the model window's
Simulation menu, choose Model Configuration parameters. In the Configuration
Parameters dialog box, set Stop time to 250. Running the model produces the
following scatter diagram plot.

1-15

1 Input, Output, and Display

The points of the scatter plot lie on a circle of radius 1. Note that the points fade as
time passes. This is because the box next to Color fading is checked under Rendering
Properties, which causes the scope to render points more dimly the more time that
passes after they are plotted. If you clear this box, you see a full circle of points.

The Constellation Diagram block displays a circular trajectory.

In the eye diagram, the upper set of traces represents the real part of the signal and the
lower set of traces represents the imaginary part of the signal.

1-16

 Sources and Sinks

View a Modulated Signal

This multipart example creates an eye diagram, scatter plot, and signal trajector plot for
a modulated signal. It examines the plots one by one in these sections:

• “Eye Diagram of a Modulated Signal” on page 1-17
• “Constellation Diagram of a Modulated Signal” on page 1-20
• “Signal Trajectory of a Modulated Signal” on page 1-21

Eye Diagram of a Modulated Signal

The following model modulates a random signal using QPSK, filters the signal with a
raised cosine filter, and creates an eye diagram from the filtered signal.

1-17

1 Input, Output, and Display

To open the model, enter doc_signaldisplays at the MATLAB command line. To build
the model, gather and configure the following blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of the Comm
Sources library

• Set M-ary number to 4.
• Set Sample time to 0.01.

• QPSK Modulator Baseband, in PM in the Digital Baseband sublibrary of the
Modulation library of Communications System Toolbox, with default parameters

• AWGN Channel, in the Channels library of Communications System Toolbox, with the
following changes to the default parameter settings:

• Set Mode to Signal-to-noise ratio (SNR).
• Set SNR (dB) to 15.

• Raised Cosine Transmit Filter, in the Comm Filters library

• Set Filter shape to Normal.
• Set Rolloff factor to 0.5.
• Set Filter span in symbols to 6.
• Set Output samples per symbol to 8.
• Set Input processing to Elements as channels (sample based).

• Eye Diagram, in the Comm Sinks library

• Set Samples per symbol to 8.
• Set Symbols per trace to 3. This specifies the number of symbols that are

displayed in each trace of the eye diagram. A trace is any one of the individual
lines in the eye diagram.

• Set Traces displayed to 3.
• Set New traces per display to 1. This specifies the number of new traces that

appear each time the diagram is refreshed. The number of traces that remain in
the diagram from one refresh to the next is Traces displayed minus New traces
per display.

• On the Rendering Properties panel, set Markers to + to indicate the points
plotted at each sample. The default value of Markers is empty, which indicates no
marker.

1-18

 Sources and Sinks

• On the Figure Properties panel, set Eye diagram to display to In-phase
only.

When you run the model, the Eye Diagram displays the following diagram. Your exact
image varies depending on when you pause or stop the simulation.

Three traces are displayed. Traces 2 and 3 are faded because Color fading under
Rendering Properties is selected. This causes traces to be displayed less brightly
the older they are. In this picture, Trace 1 is the most recent and Trace 3 is the oldest.
Because New traces per display is set to 1, only Trace 1 is appearing for the first time.
Traces 2 and 3 also appear in the previous display.

Because Symbols per trace is set to 3, each trace contains three symbols, and because
Samples per trace is set to 8, each symbol contains eight samples. Note that trace
1 contains 24 points, which is the product of Symbols per trace and Samples per
symbol. However, traces 2 and 3 contain 25 points each. The last point in trace 2, at the
right border of the scope, represents the same sample as the first point in trace 1, at the
left border of the scope. Similarly, the last point in trace 3 represents the same sample as
the first point in trace 2. These duplicate points indicate where the traces would meet if
they were displayed side by side, as illustrated in the following picture.

1-19

1 Input, Output, and Display

You can view a more realistic eye diagram by changing the value of Traces displayed to
40 and clearing the Markers field.

When the Offset parameter is set to 0, the plotting starts at the center of the first
symbol, so that the open part of the eye diagram is in the middle of the plot for most
points.

Constellation Diagram of a Modulated Signal

The following model creates a scatter plot of the same signal considered in “Eye Diagram
of a Modulated Signal” on page 1-17.

1-20

 Sources and Sinks

To build the model, follow the instructions in “Eye Diagram of a Modulated Signal” on
page 1-17 but replace the Eye Diagram block with the following block:

• Constellation Diagram, in the Comms Sinks library

• Set Samples per symbol to 2.
• Set Offset to 0. This specifies the number of samples to skip before plotting the

first point.
• Set Symbols to display to 40.

When you run the simulation, the Constellation Diagram block displays the following
plot.

The plot displays 30 points. Because Color fading under Rendering Properties is
selected, points are displayed less brightly the older they are.

Signal Trajectory of a Modulated Signal

The following model creates a signal trajectory plot of the same signal considered in “Eye
Diagram of a Modulated Signal” on page 1-17.

1-21

1 Input, Output, and Display

To build the model, follow the instructions in “Eye Diagram of a Modulated Signal” on
page 1-17 but replace the Eye Diagram block with the following block:

• Constellation Diagram , in the Comms Sinks library

• Set Samples per symbol to 8.
• Set Symbols displayed to 40. This specifies the number of symbols displayed

in the signal trajectory. The total number of points displayed is the product of
Samples per symbol and Symbols displayed.

• Set New symbols per display to 10. This specifies the number of new symbols
that appear each time the diagram is refreshed. The number of symbols that
remain in the diagram from one refresh to the next is Symbols displayed minus
New symbols per display.

When you run the model, the Constellation Diagram displays a trajectory like the one
below.

1-22

 Sources and Sinks

The plot displays 40 symbols. Because Color fading under Rendering Properties is
selected, symbols are displayed less brightly the older they are.

See “Constellation Diagram of a Modulated Signal” on page 1-20 to compare the
preceding signal trajectory to the scatter plot of the same signal. The Constellation
Diagram block connects the points displayed by the Constellation Diagram block to
display the signal trajectory.

If you increase Symbols displayed to 100, the model produces a signal trajectory like
the one below. The total number of points displayed at any instant is 800, which is the
product of the parameters Samples per symbol and Symbols displayed.

1-23

1 Input, Output, and Display

1-24

 Support SDR Hardware

Support SDR Hardware

Communications System Toolbox software can read a signal from external hardware
devices using the Communications System Toolbox support packages for software-defined
radio (SDR). You can design, prototype and test SDR applications in MATLAB and
Simulink with live radio signals. Use the supported hardware as a radio peripheral with
the supplied bitstream and also run your own design in the FPGA with the automated
targeting workflow using HDL Coder™.

The support packages for SDR support both fixed bitstream and custom bitstream (user-
provided logic) workflows (SDR Targeting).

For more about software-defined radio with MATLAB and Simulink, visit Software-
Defined Radio (SDR) on the MathWorks® web site.

For a list of support packages for use with Communications System Toolbox, visit the
Hardware Support Catalog for Communications System Toolbox.

1-25

http://www.mathworks.com/discovery/sdr.html
http://www.mathworks.com/discovery/sdr.html
http://www.mathworks.com/hardware-support/index.html?q=product%3A%22Communications+System+Toolbox%22

1 Input, Output, and Display

Transmit and Receive Signals Over the Air with Software Defined
Radios

Communications System Toolbox software can read a signal from external hardware
devices using the Communications System Toolbox support packages for software-defined
radio (SDR). You can design, prototype and test SDR applications in MATLAB and
Simulink with live radio signals. Use the supported hardware as a radio peripheral with
the supplied bitstream and also run your own design in the FPGA with the automated
targeting workflow using HDL Coder.

The support packages for SDR support both fixed bitstream and custom bitstream (user-
provided logic) workflows (SDR Targeting).

For more about software-defined radio with MATLAB and Simulink, visit Software-
Defined Radio (SDR) on the MathWorks web site.

For a list of support packages for use with Communications System Toolbox, visit the
Hardware Support Catalog for Communications System Toolbox.

1-26

http://www.mathworks.com/discovery/sdr.html
http://www.mathworks.com/discovery/sdr.html
http://www.mathworks.com/hardware-support/index.html?q=product%3A%22Communications+System+Toolbox%22

2

Data and Signal Management

• “Matrices, Vectors, and Scalars” on page 2-2
• “Sample-Based and Frame-Based Processing” on page 2-4
• “Floating-Point and Fixed-Point Data Types” on page 2-5
• “Delays” on page 2-6

2 Data and Signal Management

Matrices, Vectors, and Scalars

Simulink supports matrix signals, one-dimensional arrays, sample-based processing, and
frame-based processing. This section describes how Communications System Toolbox
processes certain kinds of matrices and signals.

This documentation uses the unqualified words scalar and vector in ways that emphasize
a signal's number of elements, not its strict dimension properties:

• A scalar signal contains a single element. The signal could be a one-dimensional array
with one element, or a matrix of size 1-by-1.

• A vector signal contains one or more elements, arranged in a series. The signal
could be a one-dimensional array, a matrix that has exactly one column, or a matrix
that has exactly one row. The number of elements in a vector is called its length or,
sometimes, its width.

In cases when it is important for a description or schematic to distinguish among
different types of scalar signals or different types of vector signals, this document
mentions the distinctions explicitly. For example, the terms one-dimensional array,
column vector, and row vector distinguish among three types of vector signals.

The size of a matrix is the pair of numbers that indicate how many rows and columns
the matrix has. The orientation of a two-dimensional vector is its status as either a row
vector or column vector. A one-dimensional array has no orientation – this is sometimes
called an unoriented vector.

A matrix signal that has more than one row and more than one column is called a full
matrix signal.

Processing Rules

The following rules indicate how the blocks in the Communications System Toolbox
process scalar, vector, and matrix signals.

• In their numerical computations, blocks that process scalars do not distinguish
between one-dimensional scalars and one-by-one matrices. If the block produces a
scalar output from a scalar input, the block preserves dimension.

• For vector input signals:

• The numerical computations do not distinguish between one-dimensional arrays
and M-by-1 matrices.

2-2

 Matrices, Vectors, and Scalars

• Most blocks do not process row vectors and do not support multichannel
functionality.

• The block output preserves dimension and orientation.
• The block treats elements of the input vector as a collection that arises naturally

from the block's operation (for example, a collection of symbols that jointly
represent a codeword) or as successive samples from a single time series.

• Most blocks do not process matrix signals that have more than one row and more than
one column. For blocks that do, a signal in the shape of an N-by-M matrix represents
a series of N successive samples from M channels. An Input processing parameter
on the block determines whether each element or column of the input signal is a
channel.

• Some blocks, such as the digital baseband modulation blocks, can produce multiple
output values for each value of a scalar input signal. A Rate options parameter on
the block determines if the additional samples are output by increasing the rate of the
output signal or by increasing the size of the output signal.

• Blocks that process continuous-time signals do not process frame-based inputs. Such
blocks include the analog phase-locked loop blocks.

To learn which blocks processes scalar signals, vector signals, or matrices, refer to each
block's individual Help page.

2-3

2 Data and Signal Management

Sample-Based and Frame-Based Processing

In frame-based processing, blocks process data one frame at a time. Each frame of data
contains sequential samples from an independent channel. For more information, see
“Sample- and Frame-Based Concepts” in the DSP System Toolbox documentation.

In sample-based processing, blocks process signals one sample at a time. Each element of
the input signal represents one sample of a distinct channel. For more information, see
“What Is Sample-Based Processing?” in the DSP System Toolbox documentation.

2-4

 Floating-Point and Fixed-Point Data Types

Floating-Point and Fixed-Point Data Types

The inputs and outputs of the communications blocks support various data types. For
some blocks, changing to single outputs can lead to different results when compared
with double outputs for the same set of parameters. Some blocks may naturally output
different data types than what they receive (e.g. digital modulators) a signal. Refer to the
individual block reference pages for details.

For more information, see “Floating-Point Numbers” in the Fixed-Point Designer™
documentation and “Fixed-Point Signal Processing” in the DSP System Toolbox
documentation.

Access the Block Support Table

The Communications System Toolbox Block Support Table is available through the
Simulink model Help menu. The table provides information about data type support and
code generation coverage for all Communications System Toolbox blocks. To access the
table, select Help > Simulink > Block Data Types & Code Generation Support >
Communications System Toolbox.

You can also access the Communications System Toolbox Data Type Support Table by
typing showcommblockdatatypetable at the MATLAB command line.

2-5

2 Data and Signal Management

Delays

In this section...

“Section Overview” on page 2-6
“Sources of Delays” on page 2-7
“ADSL Example Model” on page 2-7
“Punctured Coding Model” on page 2-9
“Use the Find Delay and Align Signals Blocks” on page 2-12

Section Overview

Some models require you to know how long it takes for data in one portion of a model to
influence a signal in another portion of a model. For example, when configuring an error
rate calculator, you must indicate the delay between the transmitter and the receiver. If
you miscalculate the delay, the error rate calculator processes mismatched pairs of data
and consequently returns a meaningless result.

This section illustrates the computation of delays in multirate models and in models
where the total delay in a sequence of blocks comprises multiple delays from individual
blocks. This section also indicates how to use the Find Delay and Align Signals blocks to
help deal with delays in a model.

Other References for Delays

Other parts of this documentation set also discuss delays. For information about dealing
with delays or about delays in specific types of blocks, see

• “Group Delay” on page 14-5
• Find Delay block reference page
• Align Signals block reference page
• Viterbi Decoder block reference page
• Derepeat block reference page

For discussions of delays in simpler examples than the ones in this section, see

• Example: A Rate 2/3 Feedforward Encoder. on page 6-55.

2-6

 Delays

• Example: Soft-Decision Decoding on page 6-61. (See Delay in Received Data on
page 6-65.)

• Example: Delays from Demodulation on page 6-198.

Sources of Delays

While some blocks can determine their current output value using only the current input
value, other blocks need input values from multiple time steps to compute the current
output value. In the latter situation, the block incurs a delay. An example of this case is
when the Derepeat block must average five samples from a scalar signal. The block must
delay computing the average until it has received all five samples.

In general, delays in your model might come from various sources:

• Digital demodulators
• Convolutional interleavers or deinterleavers
• Equalizers
• Viterbi Decoder block
• Buffering, downsampling, derepeating, and similar signal operations
• Explicit delay blocks, such as Delay and Variable Integer Delay
• Filters

The following discussions include some of these sources of delay.

ADSL Example Model

This section examines the 256 Channel asymmetric digital subscriber line (ADSL)
example model and aims to compute the correct Receive delay parameter value in
one of the Error Rate Calculation blocks in the model. The model includes delays from
convolutional interleaving and an explicit delay block. To open the ADSL example model,
enter commadsl in the MATLAB Command Window.

In the ADSL example, data follows one of two parallel paths, one with a nonzero delay
and the other with a delay of zero. One path includes a convolutional interleaver and
deinterleaver, while the other does not. Near the end of each path is an Error Rate
Calculation block, whose Receive delay parameter must reflect the delay of the given

2-7

2 Data and Signal Management

path. The rest of the discussion makes an observation about frame periods in the model
and then considers the path for interleaved data.

Frame Periods in the Model

Before searching for individual delays, first observe that most signal lines throughout
the model share the same frame period. To see this, select Display > Sample Time.
This option colors blocks and signals according to their frame periods (or sample periods,
in the case of sample-based signals). All signal lines at the top level of the model are
the same color, which means that they share the same frame period. As a consequence,
frames are a convenient unit for measuring delays in the blocks that process these
signals. In the computation of the cumulative delay along a path, the weighted average
(of numbers of frames, weighted by each frame's period) reduces to a sum.

Path for Interleaved Data

In the transmitter portion of the model, the interleaved path is the lower branch, shown
in yellow below. Similarly, the interleaved path in the receiver portion of the model is the
lower branch. Near the end of the interleaved path is an Error Rate Calculation block
that computes the value labeled Interleaved BER.

The following table summarizes the delays in the path for noninterleaved data.
Subsequent paragraphs explain the delays in more detail and explain why the total delay
relative to the Error Rate Calculation block is one frame, or 776 samples.

Block Delay, in Output
Samples from
Individual Block

Delay, in Frames Delay, in Input
Samples to Error Rate
Calculation Block

Convolutional
Interleaver and
Convolutional
Deinterleaver pair

40

Delay 800

1 (combined) 776 (combined)

2-8

 Delays

Block Delay, in Output
Samples from
Individual Block

Delay, in Frames Delay, in Input
Samples to Error Rate
Calculation Block

Total N/A 1 776

Interleaving

Unlike the noninterleaved path, the interleaved path contains a Convolutional
Interleaver block in the transmitter and a Convolutional Deinterleaver block in the
receiver. The delay of the interleaver/deinterleaver pair is the product of the Rows of
shift registers parameter, the Register length step parameter, and one less than
the Rows of shift registers parameter. In this case, the delay of the interleaver/
deinterleaver pair turns out to be 5*2*4 = 40 samples.
Delay Block

The receiver portion of the interleaved path also contains a Delay block. This block
explicitly causes a delay of 800 samples having the same sample time as the 40 samples
of delay from the interleaver/deinterleaver pair. Therefore, the total delay from
interleaving, deinterleaving, and the explicit delay is 840 samples. These 840 samples
make up one frame of data leaving the Delay block.
Summing the Delays

No other blocks in the interleaved path of the example cause any delays. Adding the
delays from the interleaver/deinterleaver pair and the Delay block indicates that the
total delay in the interleaved path is one frame.
Total Delay Relative to Error Rate Calculation Block

The Error Rate Calculation block that computes the value labeled Interleaved BER
requires a Receive delay parameter value that is equivalent to one frame. The Receive
delay parameter is measured in samples and each input frame to the Error Rate
Calculation block contains 776 samples. Also, the frame rate at the outports of all delay-
causing blocks in the interleaved path equals the frame rate at the input of the Error
Rate Calculation block. Therefore, the correct value for the Receive delay parameter is
776 samples.

Punctured Coding Model

This section discusses a punctured coding model that includes delays from decoding,
downsampling, and filtering. Two Error Rate Calculation blocks in the model work

2-9

2 Data and Signal Management

correctly if and only if their Receive delay parameters accurately reflect the delays in
the model. To open the model, enter doc_punct in the MATLAB Command Window.

Frame Periods in the Model

Before searching for individual delays, select Display>Sample Time>All. Only the
rightmost portion of the model differs in color from the rest of the model. This means that
all signals and blocks in the model except those in the rightmost edge share the same
frame period. Consequently, frames at this predominant frame rate are a convenient unit
for measuring delays in the blocks that process these signals. In the computation of the
cumulative delay along a path, the weighted average (of numbers of frames, weighted by
each frame's period) reduces to a sum.

The yellow blocks represent multirate systems, while the AWGN Channel block runs at a
higher frame rate than all the other blocks in the model.

Inner Error Rate Block

The block labeled Inner Error Rate, located near the center of the model, is a copy of the
Error Rate Calculation block from the Comm Sinks library. It computes the bit error
rate for the portion of the model that excludes the punctured convolutional code. In the
portion of the model between this block's two input signals, delays come from the Tx

2-10

 Delays

Filter and the Rx Filter. This section explains why the Inner Error Rate block’s Receive
delay parameter is the total delay value of 16.
Tx Filter Block

The block labeled Tx Filter is a copy of the Raised Cosine Transmit Filter block. It
interpolates the input signal by a factor of 8 and applies a square-root raised cosine filter.
The value of the block’s Filter span in symbols parameter is 6, which means its group
delay is 3 symbols. Since this block’s sample rate increases from input port to output
port, it must output an initial frame of zeros at the beginning of the simulation. Since its
input frame size is 2, the block’s total delay is 2 + 3 = 5 symbols. This corresponds to 5
samples at the block’s input port.
Rx Filter Block

The block labeled Rx Filter is a copy of the Raised Cosine Receive Filter block. It
decimates its input signal by a factor of 8 and applies another square-root raised cosine
filter. The value of this block’s Filter span in symbols parameter is 6, which means its
group delay is 3 symbols. At the block’s output, the 3 symbols correspond to 3 samples.
QPSK Demodulator Block

The block labeled QPSK Demodulator Baseband receives complex QPSK signals and
outputs 2 bits for each complex input. This conversion to output bits doubles the
cumulative delay at the input of the block.
Summing the Delays

No other blocks in the portion of the model between the Inner Error Rate block's two
input signals cause any delays. The total delay is then (2 + 3 + 3) * 2 = 16
samples. This value can be used as the Receive Delay parameter in the Inner Error
Rate block.

Outer Error Rate Block

The block labeled Outer Error Rate, located at the left of the model, is a copy of the Error
Rate Calculation block from the Comm Sinks library. It computes the bit error rate for
the entire model, including the punctured convolutional code. Delays come from the Tx
Filter, Rx Filter, and Viterbi Decoder blocks. This section explains why the Outer Error
Rate block's Receive delay parameter is the total delay value of 108.
Filter and Downsample Blocks

The Tx Filter, Rx Filter, and Downsample blocks have a combined delay of 16 samples.
For details, see “Inner Error Rate Block” on page 2-10.

2-11

2 Data and Signal Management

Viterbi Decoder Block

Because the Viterbi Decoder block decodes a rate 3/4 punctured code, it actually reduces
the delay seen at its input. This reduction is given as 16 * 3/4 = 12 samples.

The Viterbi Decoder block decodes the convolutional code, and the algorithm’s use of
a traceback path causes a delay. The block processes a frame-based signal and has
Operation mode set to Continuous. Therefore, the delay, measured in output samples,
is equal to the Traceback depth parameter value of 96. (The delay amount is stated on
the reference page for the Viterbi Decoder block.) Because the output of the Viterbi
Decoder block is precisely one of the inputs to the Outer Error Rate block, it is easier to
consider the delay to be 96 samples rather than to convert it to an equivalent number of
frames.

Total Delay Relative to Outer Error Rate Block

The Outer Error Rate block requires a Receive delay parameter value that is the sum
of all delays in the system. This total delay is 12 + 96 = 108 samples.

Use the Find Delay and Align Signals Blocks

The preceding discussions explained why certain Error Rate Calculation blocks in the
models had specific Receive delay parameter values. You could have arrived at those
numbers independently by using the Find Delay block, or you could have avoided needing
to know those numbers by using the Align Signals block. This section explains both
techniques using the ADSL example model, commadsl, as an example. Applying the
techniques to the punctured convolutional coding example, discussed in “Punctured
Coding Model” on page 2-9, would be similar.

Using the Find Delay Block to Determine the Correct Receive Delay

Recall from “Path for Interleaved Data” on page 2-8 that the delay in the path for
interleaved data is 776 samples. To have the Find Delay block compute that value for
you, use this procedure:

1 Insert a Find Delay block and a Display block in the model near the Error Rate
Calculation block that computes the value labeled Interleaved BER.

2 Connect the blocks as shown below.

2-12

 Delays

3 Set the Find Delay block's Correlation window length parameter to a value
substantially larger than 776, such as 2000.

Note You must use a sufficiently large correlation window length or else the values
produced by the Find Delay block do not stabilize at a correct value.

4 Run the simulation.

The new Display block now shows the value 776, as expected.

Using the Align Signals Block Before Computing the Error Rate

To use the Error Rate Calculation block to compute the value labeled Interleaved BER
without having to set the Receive delay parameter to a nonzero value, you can use the
Align Signals block to automatically align the transmitted and received signals before the
Error Rate Calculation block performs its computations. Use this procedure:

1 Insert an Align Signals block and a Display block in the model near the Error Rate
Calculation block that computes the value labeled Interleaved BER.

2 Connect the blocks as shown below.

2-13

2 Data and Signal Management

3 Set the Align Signals block's Correlation window length parameter to a value
substantially larger than 776, such as 2000.

Note You must use a sufficiently large correlation window length or else the Align
Signals block cannot find the correct amount by which to delay one of the signals. If
the delay output from the Align Signals block does not stabilize at a constant value,
the correlation window length is probably too small.

4 Set the Error Rate Calculation block's Receive delay parameter to 0. You might
also want to set the block's Computation delay parameter to a nonzero value to
account for the possibility that the Align Signals block takes a nonzero amount of
time to stabilize on the correct amount by which to delay one of the signals.

5 Run the simulation.

The new Display block now shows the value 776. Also, the Align Signals block delays one
signal relative to the other so that the signals are aligned. The Error Rate Calculation
block therefore processes two signals that are properly aligned with each other and does
not need to use a nonzero Receive delay parameter to attempt any further alignment.

Examining the delay output signal from the Align Signals block, using the Display block
as in the figure above, is important because if the delay output signal does not stabilize
at a constant value, the signals are not truly aligned and the error rate is not reliable. In
this case, the Align Signals block's Correlation window length parameter is probably
too small.

Manipulate Delays

• “Delays and Alignment Problems” on page 2-14
• “Aligning Words of a Block Code” on page 2-18
• “Aligning Words for Interleaving” on page 2-20
• “Aligning Words of a Concatenated Code” on page 2-23
• “Aligning Words for Nonlinear Digital Demodulation” on page 2-25

Delays and Alignment Problems

Some models require you not only to compute delays but to manipulate them. For
example, if a model incurs a delay between a block encoder and its corresponding
decoder, the decoder might misinterpret the boundaries between the codewords that it
receives and, consequently, return meaningless results. More generally, such a situation

2-14

 Delays

can arise when the path between paired components of a block-oriented operation (such
as interleaving, block coding, or bit-to-integer conversions) includes a delay-causing
operation (such as those listed in “Sources of Delays” on page 2-7).

To avoid this problem, you can insert an additional delay of an appropriate amount
between the encoder and decoder. If the model also computes an error rate, then
the additional delay affects that process, as described in “Delays” on page 2-6.
This section uses examples to illustrate the purpose, methods, and implications of
manipulating delays in a variety of circumstances.

This section illustrates the sensitivity of block-oriented operations to delays, using a
small model that aims to capture the essence of the problem in a simple form. Open the
model by entering doc_alignment in the MATLAB Command Window. Then run the
simulation so that the Display blocks show relevant values.

In this model, two coding blocks create and decode a block code. Two copies of the Delay
block create a delay between the encoder and decoder. The two Delay blocks have
different purposes in this illustrative model:

• The Inherent Delay block represents any delay-causing blocks that might occur in a
model between the encoder and decoder. See “Sources of Delays” on page 2-7 for
a list of possibilities that might occur in a more realistic model.

2-15

2 Data and Signal Management

• The Added Delay block is an explicit delay that you insert to produce an appropriate
amount of total delay between the encoder and decoder. For example, the commadsl
model contains a Delay block that serves this purpose.

Observing the Problem

By default, the Delay parameters in the Inherent Delay and Added Delay blocks are set
to 1 and 0, respectively. This represents the situation in which some operation causes a
one-bit delay between the encoder and decoder, but you have not yet tried to compensate
for it. The total delay between the encoder and decoder is one bit. You can see from the
blocks labeled Word and Delayed Word that the codeword that leaves the encoder is
shifted downward by one bit by the time it enters the decoder. The decoder receives a
signal in which the boundary of the codeword is at the second bit in the frame, instead of
coinciding with the beginning of the frame. That is, the codewords and the frames that
hold them are not aligned with each other.

This nonalignment is problematic because the Hamming Decoder block assumes that
each frame begins a new codeword. As a result, it tries to decode a word that consists of
the last bit of one output frame from the encoder followed by the first six bits of the next
output frame from the encoder. You can see from the Error Rate Display block that the
error rate from this decoding operation is close to 1/2. That is, the decoder rarely recovers
the original message correctly.

To use an analogy, suppose someone corrupts a paragraph of prose by moving each period
symbol from the end of the sentence to the end of the first word of the next sentence.
If you try to read such a paragraph while assuming that a new sentence begins after a
period, you misunderstand the start and end of each sentence. As a result, you might fail
to understand the meaning of the paragraph.

To see how delays of different amounts affect the decoder's performance, vary the values
of the Delay parameter in the Added Delay block and the Receive delay parameter in
the Error Rate Calculation block and then run the simulation again. Many combinations
of parameter values produce error rates that are close to 1/2. Furthermore, if you
examine the transmitted and received data by entering

[tx rx]

in the MATLAB Command Window, you might not detect any correlation between the
transmitted and received data.

2-16

 Delays

Correcting the Delays

Some combinations of parameter values produce error rates of zero because the delays
are appropriate for the system. For example:

• In the Added Delay block, set Delay to 6.
• In the Error Rate Calculation block, set Receive delay to 4.
• Run the simulation.
• Enter [tx rx] in the MATLAB Command Window.

The top number in the Error Rate Display block shows that the error rate is zero. The
decoder recovered each transmitted message correctly. However, the Word and Displayed
Word blocks do not show matching values. It is not immediately clear how the encoder's
output and the decoder's input are related to each other. To clarify the matter, examine
the output in the MATLAB Command Window. The sequence along the first column (tx)
appears in the second column (rx) four rows later. To confirm this, enter

isequal(tx(1:end-4),rx(5:end))

in the MATLAB Command Window and observe that the result is 1 (true). This last
command tests whether the first column matches a shifted version of the second column.
Shifting the MATLAB vector rx by four rows corresponds to the Error Rate Calculation
block's behavior when its Receive delay parameter is set to 4.

To summarize, these special values of the Delay and Receive delay parameters work
for these reasons:

• Combined, the Inherent Delay and Added Delay blocks delay the encoded signal by
a full codeword rather than by a partial codeword. Thus the decoder is correct in its
assumption that a codeword boundary falls at the beginning of an input frame and
decodes the words correctly. However, the delay in the encoded signal causes each
recovered message to appear one word later, that is, four bits later.

• The Error Rate Calculation block compensates for the one-word delay in the system
by comparing each word of the transmitted signal with the data four bits later in the
received signal. In this way, it correctly concludes that the decoder's error rate is zero.

Note These are not the only parameter values that produce error rates of zero.
Because the code in this model is a (7, 4) block code and the inherent delay value is 1,
you can set the Delay and Receive delay parameters to 7k-1 and 4k, respectively,

2-17

2 Data and Signal Management

for any positive integer k. It is important that the sum of the inherent delay (1) and
the added delay (7k-1) is a multiple of the codeword length (7).

Aligning Words of a Block Code

The ADSL example, discussed in “ADSL Example Model” on page 2-7, illustrates
the need to manipulate the delay in a model so that each frame of data that enters a
block decoder has a codeword boundary at the beginning of the frame. The need arises
because the path between a block encoder and block decoder includes a delay-causing
convolutional interleaving operation. This section explains why the model uses a Delay
block to manipulate the delay between the convolutional deinterleaver and the block
decoder, and why the Delay block is configured as it is. To open the ADSL example
model, enter commadsl in the MATLAB Command Window.

Misalignment of Codewords

In the ADSL example, the Convolutional Interleaver and Convolutional Deinterleaver
blocks appear after the Scrambler & FEC subsystems but before the Descrambler & FEC
subsystems. These two subsystems contain blocks that perform Reed-Solomon coding,
and the coding blocks expect each frame of input data to start on a new word rather than
in the middle of a word.

As discussed in “Path for Interleaved Data” on page 2-8, the delay of the interleaver/
deinterleaver pair is 40 samples. However, the input to the Descrambler & FEC
subsystem is a frame of size 840, and 40 is not a multiple of 840. Consequently, the
signal that exits the Convolutional Deinterleaver block is a frame whose first entry does
not represent the beginning of a new codeword. As described in “Observing the Problem”
on page 2-16, this misalignment, between codewords and the frames that contain
them, prevents the decoder from decoding correctly.

Inserting a Delay to Correct the Alignment

The ADSL example solves the problem by moving the word boundary from the 41st
sample of the 840-sample frame to the first sample of a successive frame. Moving the
word boundary is equivalent to delaying the signal. To this end, the example contains a
Delay block between the Convolutional Deinterleaver block and the Descrambler & FEC
subsystem.

2-18

 Delays

The Delay parameter in the Delay block is 800 because that is the minimum number
of samples required to shift the 41st sample of one 840-sample frame to the first sample
of the next 840-sample frame. In other words, the sum of the inherent 40-sample delay
(from the interleaving/deinterleaving process) and the artificial 800-sample delay is a full
frame of data, not a partial frame.

This 800-sample delay has implications for other parts of the model, specifically, the
Receive delay parameter in one of the Error Rate Calculation blocks. For details about
how the delay influences the value of that parameter, see “Path for Interleaved Data” on
page 2-8.

Using the Find Delay Block

The preceding discussion explained why an 800-sample delay is necessary to correct the
misalignment between codewords and the frames that contain them. Knowing that the
Descrambler & FEC subsystem requires frame boundaries to occur on word boundaries,
you could have arrived at the number 800 independently by using the Find Delay block.
Use this procedure:

1 Insert a Find Delay block and a Display block in the model.
2 Create a branch line that connects the input of the Convolutional Interleaver block

to the sRef input of the Find Delay block.
3 Create another branch line that connects the output of the Convolutional

Deinterleaver block to the sDel input of the Find Delay block.
4 Connect the delay output of the Find Delay block to the new Display block. The

modified part of the model now looks like the following image (which also shows drop
shadows on key blocks to emphasize the modifications).

2-19

2 Data and Signal Management

5 Show the dimensions of each signal in the model by selecting enabling Display >
Signals & Ports > Signal Dimensions.

6 Run the simulation.

The new Display block now shows the value 40. Also, the display of signal dimensions
shows that the output from the Convolutional Deinterleaver block is a frame of length
840. These results indicate that the sequence of blocks between the Convolutional
Interleaver and Convolutional Deinterleaver, inclusive, delays an 840-sample frame by
40 samples. An additional delay of 800 samples brings the total delay to 840. Because the
total delay is now a multiple of the frame length, the delayed deinterleaved data can be
decoded.

Aligning Words for Interleaving

This section describes an example that manipulates the delay before a deinterleaver,
because the path between the interleaver and deinterleaver includes a delay from
demodulation. To open the model, enter doc_gmskint in the MATLAB Command
Window.

2-20

 Delays

The model includes block coding, helical interleaving, and GMSK modulation. The table
below summarizes the individual block delays in the model.

Block Delay, in Output Samples
from Individual Block

Reference

GMSK Demodulator
Baseband

16 “Delays in Digital
Modulation” on page 6-197

Helical Deinterleaver 42 “Delays of Convolutional
Interleavers” on page
6-161

Delay 5 Delay reference page

Misalignment of Interleaved Words

The demodulation process in this model causes a delay between the interleaver and
deinterleaver. Because the deinterleaver expects each frame of input data to start on
a new word, it is important to ensure that the total delay between the interleaver and
deinterleaver includes one or more full frames but no partial frames.

The delay of the demodulator is 16 output samples. However, the input to the Helical
Deinterleaver block is a frame of size 21, and 16 is not a multiple of 21. Consequently,

2-21

2 Data and Signal Management

the signal that exits the GMSK Demodulator Baseband block is a frame whose first entry
does not represent the beginning of a new word. As described in “Observing the Problem”
on page 2-16, this misalignment between words and the frames that contain them
hinders the deinterleaver.
Inserting a Delay to Correct the Alignment

The model moves the word boundary from the 17th sample of the 21-sample frame to the
first sample of the next frame. Moving the word boundary is equivalent to delaying the
signal by five samples. The Delay block between the GMSK Demodulator Baseband block
and the Helical Deinterleaver block accomplishes such a delay. The Delay block has its
Delay parameter set to 5.

Combining the effects of the demodulator and the Delay block, the total delay between
the interleaver and deinterleaver is a full 21-sample frame of data, not a partial frame.
Checking Alignment of Block Codewords

The interleaver and deinterleaver cause a combined delay of 42 samples measured at
the output from the Helical Deinterleaver block. Because the delayed output from the
deinterleaver goes next to a Reed-Solomon decoder, and because the decoder expects each
frame of input data to start on a new word, it is important to ensure that the total delay
between the encoder and decoder includes one or more full frames but no partial frames.

In this case, the 42-sample delay is exactly two frames. Therefore, it is not necessary to
insert a Delay block between the Helical Deinterleaver block and the Binary-Output RS
Decoder block.
Computing Delays to Configure the Error Rate Calculation Blocks

The model contains two Error Rate Calculation blocks, labeled Channel Error Rate and
System Error Rate. Each of these blocks has a Receive delay parameter that must
reflect the delay of the path between the block's Tx and Rx signals. The following table
explains the Receive delay values in the two blocks.

Block Receive Delay Value Reason

Channel Error
Rate

16 Delay of GMSK Demodulator Baseband
block, in samples

System Error Rate 15*3 Three fifteen-sample frames: one frame from
the GMSK Demodulator Baseband and Delay
blocks, and two frames from the interleaver/
deinterleaver pair

2-22

 Delays

Aligning Words of a Concatenated Code

This section describes an example that manipulates the delay between the two portions
of a concatenated code decoder, because the first portion includes a delay from Viterbi
decoding while the second portion expects frame boundaries to coincide with word
boundaries. To open the model, enter doc_concat in the MATLAB Command Window. It
uses the block and convolutional codes from the commdvbt example, but simplifies the
overall design a great deal.

The model includes a shortened block code and a punctured convolutional code. All
signals and blocks in the model share the same frame period. The following table
summarizes the individual block delays in the model.

Block Delay, in Output Samples from Individual Block

Viterbi Decoder 136
Delay 1496 (that is, 1632 - 136)

Misalignment of Block Codewords

The Viterbi decoding process in this model causes a delay between the Integer to Bit
Converter block and the Bit to Integer Converter block. Because the latter block expects

2-23

2 Data and Signal Management

each frame of input data to start on a new 8-bit word, it is important to ensure that the
total delay between the two converter blocks includes one or more full frames but no
partial frames.

The delay of the Viterbi Decoder block is 136 output samples. However, the input to
the Bit to Integer Converter block is a frame of size 1632. Consequently, the signal
that exits the Viterbi Decoder block is a frame whose first entry does not represent the
beginning of a new word. As described in “Observing the Problem” on page 2-16, this
misalignment between words and the frames that contain them hinders the converter
block.

Note The outer decoder in this model (Integer-Output RS Decoder) also expects each
frame of input data to start on a new codeword. Therefore, the misalignment issue in
this model affects many concatenated code designs, not just those that convert between
binary-valued and integer-valued signals.

Inserting a Delay to Correct the Alignment

The model moves the word boundary from the 137th sample of the 1632-sample frame to
the first sample of the next frame. Moving the word boundary is equivalent to delaying
the signal by 1632-136 samples. The Delay block between the Viterbi Decoder block and
the Bit to Integer Converter block accomplishes such a delay. The Delay block has its
Delay parameter set to 1496.

Combining the effects of the Viterbi Decoder block and the Delay block, the total delay
between the interleaver and deinterleaver is a full 1632-sample frame of data, not a
partial frame.
Computing Delays to Configure the Error Rate Calculation Blocks

The model contains two Error Rate Calculation blocks, labeled Inner Error Rate and
Outer Error Rate. Each of these blocks has a Receive delay parameter that must reflect
the delay of the path between the block's Tx and Rx signals. The table below explains the
Receive delay values in the two blocks.

Block Receive Delay Value Reason

Inner Error Rate 136 Delay of Viterbi Decoder block, in samples
Outer Error Rate 1504 (188*8

bits)

One 188-sample frame, from the combination
of the inherent delay of the Viterbi Decoder
block and the added delay of the Delay block

2-24

 Delays

Aligning Words for Nonlinear Digital Demodulation

This example manipulates delay in order obtain the correct symbol synchronization of a
signal so that symbol boundaries correctly align before demodulation occurs.

To open this model, type doc_nonlinear_digital_demod at the MATLAB command
line.

This model includes a CPFSK modulation scheme and pulse shaping filter. For the
demodulation to work properly, the input signal to the CPFSK demodulator block must
have the correct alignment. Various blocks in this model introduce processing delays.
Because of these delays, the input signal to the CPFSK demodulator block is not in the
correct alignment.

Both the Raised Cosine Transmit and Receive Filter blocks introduce a delay. The delay
is defined as: GroupDelay Ts◊

where Ts represents the input sample time of the Raised Cosine Transmit Filter block.

The input sample time of the Raised Cosine Transmit Filter block equals the output
sample time of the Raised Cosine Receive Filter block. Therefore, the total delay at the
output of the Raised Cosine Receive Filter is:

2-25

2 Data and Signal Management

2 ◊ ◊GroupDelay Ts

or 8 ◊ Ts

as GroupDelay = 4

The CPFSK demodulator block receives this delayed signal, and then it processes each
collection of 8 samples per symbol to compute 1 output symbol. You must ensure that
the CPFSK demodulator receives input samples in the correct collection of samples. For
binary CPFSK with a Modulation index of 1/2, the demodulator input must align along
even numbers of symbols. Note that this requirement applies only to binary CPFSK
with a modulation index of 1/2. Other CPM schemes with different M-ary values and
modulation indexes have different requirements.

To ensure that the CPFSK demodulator in this model receives the correct collection
of input samples with the correct alignment, introduce a delay of 8 samples (in this
example, 8 ◊ Ts). The total delay at the input of the CPFSK demodulator is 16 ◊ Ts ,
which equates to two symbol delays (2.T, where T is the symbol period).

In sample-based mode, the CPFSK demodulator introduces a delay of Traceback
length + 1 samples at its output. In this example, Traceback length equals 16.
Therefore, the total Receiver delay in the Error rate calculation block equals 17+2 or
19. For more information, see “Delays in Digital Modulation” on page 6-197 in the
Communications System Toolbox User's Guide.

2-26

3

Digital Modulation

3 Digital Modulation

Phase Modulation

Phase modulation is a linear baseband modulation technique in which the message
modulates the phase of a constant amplitude signal. Communications System Toolbox
provides modulators and demodulators for these phase modulation techniques:

• Phase shift keying (PSK) — Binary, quadrature, and general PSK
• Differential phase shift keying (DPSK) — Binary, quadrature, and general DPSK
• Offset QPSK (OQPSK)

Pulse amplitude modulation (PAM)

Quadrature amplitude modulation (QAM)

Phase shift keying (PSK)

Di�erential phase shift keying (DPSK)

O�set phase shift keying (OQPSK)

Frequency shift keying (FSK)

Gaussian minimum shift keying (GMSK)

Minimum shift keying (MSK)

Continuous phase frequency shift keying (CPFSK)

PSK

QAM

Amplitude

modulation

Phase

modulation

Frequency

modulation

Continuous

phase

modulation

Trellis-coded

modulation

Modulation

methods for

digital data

Orthogonal frequency

division modulation (OFDM)

To modulate input data with these techniques, you can use MATLAB functions, System
objects, or Simulink blocks.

Modulation
Scheme

MATLAB functions System objects Simulink blocks

Binary
PSK
(BPSK)

 • comm.BPSKModulator
• comm.BPSKDemodulator

• BPSK Modulator

Baseband

• BPSK Demodulator

Baseband

3-2

 Phase Modulation

Modulation
Scheme

MATLAB functions System objects Simulink blocks

Quadrature
PSK
(QPSK)

 • comm.QPSKModulator
• comm.QPSKDemodulator

• QPSK Modulator

Baseband

• QPSK Demodulator

Baseband

General
PSK

• pskmod

• pskdemod

• comm.PSKModulator
• comm.PSKDemodulator

• M-PSK Modulator

Baseband

• M-PSK Demodulator

Baseband

Differential
BPSK
(DBPSK)

 • comm.DBPSKModulator
• comm.DBPSKDemodulator

• DBPSK Modulator

Baseband

• DBPSK Demodulator

Baseband

Differential
QPSK
(DQPSK)

 • comm.DQPSKModulator
• comm.DQPSKDemodulator

• DQPSK Modulator

Baseband

• DQPSK Demodulator

Baseband

General
DPSK

• dpskmod

• dpskdemod

• comm.DPSKModulator
• comm.DPSKDemodulator

• M-DPSK Modulator

Baseband

• M-DPSK

Demodulator

Baseband

OQPSK • oqpskmod

• oqpskdemod

• comm.OQPSKModulator
• comm.OQPSKDemodulator

• OQPSK Modulator

Baseband

• OQPSK Demodulator

Baseband

Baseband and Passband Simulation

Communications System Toolbox supports baseband and passband simulation methods;
however, the phase shift keying techniques support baseband simulation only.

A general passband waveform can be represented as

3-3

3 Digital Modulation

Y t f t Y t f tc c1 22 2()cos() ()sin() ,p q p q+ - +

where fc is the carrier frequency and θ is the initial phase of the carrier signal. This
equation is equal to the real part of

[(() ())]exp() .Y t jY t e j f tj
c1 2 2+

q
p

In a baseband simulation, only the expression within the square brackets is modeled.
The vector y is a sampling of the complex signal

(() ()) .Y t jY t e j
1 2+

q

BPSK

In binary phase shift keying (BPSK), the phase of a constant amplitude signal switches
between two values corresponding to binary 1 and binary 0. The passband waveform of a
BPSK signal is

s t
E

T
f t n nn

b

b

c() cos () ; { , },= + -() Œ
2

2 1 0 1p p

where:

• Eb is the energy per bit.
• Tb is the bit duration.
• fc is the carrier frequency.

In MATLAB, the baseband representation of a BPSK signal is

s t n n
n
() cos ; { , }.= () Œp 0 1

The BPSK signal has two phases: 0 and π.

3-4

 Phase Modulation

The probability of a bit error in an AWGN channel is

P Q
E

N
b

b=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

2

0

,

where N0 is the noise power spectral density.

3-5

3 Digital Modulation

QPSK

In quadrature phase shift keying, the message bits are grouped into 2-bit symbols, which
are transmitted as one of four phases of a constant amplitude baseband signal. This
grouping provides a bandwidth efficiency that is twice as great as the efficiency of BPSK.
The general QPSK signal is expressed as

s t nt
E

T
f nn

s

s

c() cos ; { , , , },()= Ê
Ë
Á

ˆ
¯
˜ Œ+ +

2
2 0 1 2 32 1

4
p

p

where Es is the energy per symbol and Ts is the symbol duration. The complex baseband
representation of a QPSK signal is

s t j
n

nn() exp ; { , , , }.=
+Ê

Ë
Á

ˆ
¯
˜

Ê

Ë
Á

ˆ

¯
˜ Œp

2 1

4
0 1 2 3

In this QPSK constellation diagram, each 2-bit sequence is mapped to one of four possible
states. The states correspond to phases of π/4, 3π/4, 5π/4, and 7π/4.

3-6

 Phase Modulation

To improve bit error rate performance, the incoming bits can be mapped to a Gray-coded
ordering.

Binary-to-Gray Mapping

Binary Sequence Gray-coded Sequence

00 00

3-7

3 Digital Modulation

Binary Sequence Gray-coded Sequence

01 01
10 11
11 10

The primary advantage of the Gray code is that only one of the two bits changes when
moving between adjacent constellation points. Gray codes can be applied to higher-order
modulations, as shown in this Gray-coded QPSK constellation.

3-8

 Phase Modulation

The bit error probability for QPSK in AWGN with Gray coding is

P Q
E

N
b

b=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

2

0

,

3-9

3 Digital Modulation

which is the same as the expression for BPSK. As a result, QPSK provides the same
performance with twice the bandwidth efficiency.

Higher-Order PSK

In MATLAB, you can modulate and demodulate higher-order PSK constellations. The
complex baseband form for an M-ary PSK signal using natural binary-ordered symbol
mapping is

s t j
n

M
n Mn() exp ; { , , , }.=

+Ê
Ë
Á

ˆ
¯
˜

Ê

Ë
Á

ˆ

¯
˜ Œ -p

2 1
0 1 1…

This 8-PSK constellation uses Gray-coded symbol mapping.

3-10

 Phase Modulation

For modulation orders beyond 4, the bit error rate performance of PSK in AWGN
worsens. In the following figure, the QPSK and BPSK curves overlap one another.

3-11

3 Digital Modulation

DPSK

DPSK is a noncoherent form of phase shift keying that does not require a coherent
reference signal at the receiver. With DPSK, the difference between successive input
symbols is mapped to a specific phase. As an example, for binary DPSK (DBPSK), the
modulation scheme operates such that the difference between successive bits is mapped

3-12

 Phase Modulation

to a binary 0 or 1. When the input bit is 1, the differentially encoded symbol remains the
same as the previous symbol, while an incoming 0 toggles the output symbol.

The disadvantage of DPSK is that it is approximately 3 dB less energy efficient than
coherent PSK. The bit error probability for DBPSK in AWGN is Pb = 1/2 exp(Eb/N0).

OQPSK

Offset QPSK is similar to QPSK except that the time alignment of the in-phase and
quadrature bit streams differs. In QPSK, the in-phase and quadrature bit streams
transition at the same time. In OQPSK, the transitions have an offset of a half-symbol
period as shown.

3-13

3 Digital Modulation

The in-phase and quadrature signals transition only on boundaries between symbols.
These transitions occur at 1-second intervals because the sample rate is 1 Hz. The
following figure shows the in-phase and quadrature signals for an OQPSK signal.

3-14

 Phase Modulation

For OQPSK, the quadrature signal has a 1/2 symbol period offset (0.5 s).

The BER for an OQPSK signal in AWGN is identical to that of a QPSK signal. The BER
is

3-15

3 Digital Modulation

P Q
E

N
b

b=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

2

0

,

where Eb is the energy per bit and N0 is the noise power spectral density.

Soft-Decision Demodulation

The BPSK, QPSK, and M-PSK System objects and blocks can demodulate binary data
using either hard decisions or soft decisions. Two soft-decision algorithms are available:
exact log-likelihood ratio (LLR) and approximate LLR. Exact LLR provides the greatest
accuracy but is slower, while approximate LLR is less accurate but more efficient.

Exact LLR Algorithm

The log-likelihood ratio (LLR) is the logarithm of the ratio of probabilities of a 0 bit being
transmitted versus a 1 bit being transmitted for a received signal. The LLR for a bit, b, is
defined as:

L b
b r x y

b r x y
() log

Pr(| (,))

Pr(| (,))
= = =

= =
Ê

Ë
Á

ˆ

¯
˜

0

1

Assuming equal probability for all symbols, the LLR for an AWGN channel can be
expressed as:

L b

e

e

x s y s

s S

x s y s

s

x y

x y

() log

() ()

() ()

=

- - + -()
Œ

- - + -()

Â
1

1

2

2 2

0

2

2 2

s

s

ŒŒ
Â

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

S1

Variable Description

r Received signal with coordinates (x, y)

3-16

 Phase Modulation

Variable Description

b Transmitted bit (one of the K bits in an M-ary symbol, assuming all
M symbols are equally probable)

S
0

Ideal symbols or constellation points with bit 0, at the given bit
position

S
1

Ideal symbols or constellation points with bit 1, at the given bit
position

s
x

In-phase coordinate of ideal symbol or constellation point

sy
Quadrature coordinate of ideal symbol or constellation point

s
2 Noise variance of baseband signal

s
x

2 Noise variance along in-phase axis

s y

2 Noise variance along quadrature axis

Note: Noise components along the in-phase and quadrature axes are assumed to be

independent and of equal power, that is, s s sx y

2 2 2
2= = .

Approximate LLR Algorithm

Approximate LLR is computed by using only the nearest constellation point to the
received signal with a 0 (or 1) at that bit position, rather than all the constellation points
as done in exact LLR. It is defined in [2] as:

L b x s y s x s y s
s S

x y
s S

x y
() min () () min () ()= - - + -() - - + -

Œ Œ

1
2

2 2 2 2

0 1s
 (()()

References

[1] Rappaport, Theodore S. Wireless Communications: Principles and Practice. Upper
Saddle River, NJ: Prentice Hall, 1996, pp. 238–248.

3-17

3 Digital Modulation

[2] Viterbi, A. J. “An Intuitive Justification and a Simplified Implementation of the
MAP Decoder for Convolutional Codes,” IEEE Journal on Selected Areas in
Communications. Vol. 16, No. 2, Feb. 1998, pp. 260–264

Related Examples
• “Estimate BER of 8-PSK in AWGN with Reed-Solomon Coding” on page 9-32
• “Gray Coded 8-PSK” on page 7-15
• “16-PSK with Custom Symbol Mapping” on page 7-56
• “LLR vs. Hard Decision Demodulation”

3-18

4

Featured Examples

• “Compensate for Frequency Offset Using Coarse and Fine Compensation” on page
4-2

• “Correct for Symbol Timing and Doppler Offsets” on page 4-7
• “Estimate Turbo Code BER Performance in AWGN” on page 4-12
• “Random Noise Generators” on page 4-16
• “Visualize Effects of Frequency-Selective Fading” on page 4-21
• “Correct Frequency Offset QAM Using Coarse and Fine Synchronization” on page

4-38
• “Adjust Carrier Synchronizer Damping Factor to Correct Frequency Offset” on page

4-42
• “Modulate and Demodulate 8-PSK Signal” on page 4-47
• “Binary to Gray Conversion in Simulink” on page 4-50
• “Read Baseband Signal from File” on page 4-51
• “Write Baseband Signal to File” on page 4-54
• “Detect Binary Preamble in Packet” on page 4-56
• “Detect Complex Preamble in Packet” on page 4-57

4 Featured Examples

Compensate for Frequency Offset Using Coarse and Fine
Compensation

Correct for a phase and frequency offset in a noisy QAM signal using a carrier
synchronizer. Then correct for the offsets using both a carrier synchronizer and a coarse
frequency compensator.

Set the example parameters.

fs = 10000; % Symbol rate (Hz)

sps = 4; % Samples per symbol

M = 16; % Modulation order

k = log2(M); % Bits per symbol

Create a QAM modulator and an AWGN channel.

channel = comm.AWGNChannel('EbNo',20,'BitsPerSymbol',k,'SamplesPerSymbol',sps);

Create a constellation diagram object to visualize the effects of the offset compensation
techniques. Specify the constellation diagram to display only the last 4000 samples.

constdiagram = comm.ConstellationDiagram(...

 'ReferenceConstellation',qammod(0:M-1,M), ...

 'SamplesPerSymbol',sps, ...

 'SymbolsToDisplaySource','Property','SymbolsToDisplay',4000, ...

 'XLimits',[-5 5],'YLimits',[-5 5]);

Introduce a frequency offset of 400 Hz and a phase offset of 30 degrees.

phaseFreqOffset = comm.PhaseFrequencyOffset(...

 'FrequencyOffset',400,...

 'PhaseOffset',30,...

 'SampleRate',fs);

Generate random data symbols and apply 16-QAM modulation.

data = randi([0 M-1],10000,1);

modSig = qammod(data,M);

Create a raised cosine filter object and filter the modulated signal.

txfilter = comm.RaisedCosineTransmitFilter('OutputSamplesPerSymbol',sps, ...

4-2

 Compensate for Frequency Offset Using Coarse and Fine Compensation

 'Gain',sqrt(sps));

txSig = txfilter(modSig);

Apply the phase and frequency offset, and then pass the signal through the AWGN
channel.

freqOffsetSig = phaseFreqOffset(txSig);

rxSig = channel(freqOffsetSig);

Apply fine frequency correction to the signal by using the carrier synchronizer.

fineSync = comm.CarrierSynchronizer('DampingFactor',0.7, ...

 'NormalizedLoopBandwidth',0.005, ...

 'SamplesPerSymbol',sps, ...

 'Modulation','QAM');

rxData = fineSync(rxSig);

Display the constellation diagram of the last 4000 symbols.

constdiagram(rxData)

4-3

4 Featured Examples

Even with time to converge, the spiral nature of the plot shows that the carrier
synchronizer has not yet compensated for the large frequency offset. The 400 Hz offset is
1% of the sample rate.

Repeat the process with a coarse frequency compensator inserted before the carrier
synchronizer.

4-4

 Compensate for Frequency Offset Using Coarse and Fine Compensation

Create a coarse frequency compensator to reduce the frequency offset to a manageable
level.

coarseSync = comm.CoarseFrequencyCompensator('Modulation','QAM','SampleRate',fs*sps);

Pass the received signal to the coarse frequency compensator and then to the carrier
synchronizer.

syncCoarse = coarseSync(rxSig);

rxData = fineSync(syncCoarse);

Plot the constellation diagram of the signal after coarse and fine frequency compensation.

constdiagram(rxData)

4-5

4 Featured Examples

The received data now aligns with the reference constellation.

See Also
comm.CoarseFrequencyCompensator | comm.CarrierSynchronizer

4-6

 Correct for Symbol Timing and Doppler Offsets

Correct for Symbol Timing and Doppler Offsets

Recover from symbol timing and frequency offset errors by using the
comm.CarrierSynchronizer and comm.SymbolSynchronizer System objects™.

Create System Objects

Create a QAM modulator and an AWGN channel object.

mod = comm.RectangularQAMModulator('NormalizationMethod','Average power');

ch = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (SNR)', ...

 'SNR',20);

Create a matched pair of raised cosine filter objects.

txFilt = comm.RaisedCosineTransmitFilter('FilterSpanInSymbols',10, ...

 'OutputSamplesPerSymbol',8);

rxFilt = comm.RaisedCosineReceiveFilter('FilterSpanInSymbols',10, ...

 'InputSamplesPerSymbol',8,'DecimationFactor',4);

Create a PhaseFrequencyOffset object to introduce a 100 Hz Doppler shift.

doppler = comm.PhaseFrequencyOffset('FrequencyOffset',100, ...

 'PhaseOffset',45,'SampleRate',1e6);

Create a variable delay object to introduce timing offsets.

delay = dsp.VariableFractionalDelay;

Create carrier and symbol synchronizer objects to correct for a Doppler shift and a timing
offset, respectively.

carsync = comm.CarrierSynchronizer('SamplesPerSymbol',2);

symsync = comm.SymbolSynchronizer(...

 'TimingErrorDetector','Early-Late (non-data-aided)', ...

 'SamplesPerSymbol',2);

Create constellation diagram objects to view results.

cd1 = comm.ConstellationDiagram('ReferenceConstellation',constellation(mod), ...

 'SamplesPerSymbol',8,'Title','Received Signal');

cd2 = comm.ConstellationDiagram('ReferenceConstellation',constellation(mod), ...

4-7

4 Featured Examples

 'SamplesPerSymbol',2,'Title','Frequency Corrected Signal');

cd3 = comm.ConstellationDiagram('ReferenceConstellation',constellation(mod), ...

 'SamplesPerSymbol',2,'Title','Frequency and Timing Synchronized Signal');

Main Processing Loop

Perform the following operations:

• Generate random symbols and apply QAM modulation.
• Filter the modulated signal.
• Apply frequency and timing offsets.
• Pass the transmitted signal through an AWGN channel.
• Correct for the Doppler shift.
• Filter the received signal.
• Correct for the timing offset.

for k = 1:15

 data = randi([0 15],2000,1);

 modSig = step(mod,data); % QAM modulate

 txSig = step(txFilt,modSig); % Transmit filter

 txDoppler = step(doppler,txSig); % Apply Doppler shift

 txDelay = step(delay,txDoppler,k/15); % Apply variable delay

 rxSig = step(ch,txDelay); % Add white Gaussian noise

 rxFiltSig = step(rxFilt,rxSig); % Receive filter

 rxCorr = step(carsync,rxFiltSig); % Correct for Doppler

 rxData = step(symsync,rxCorr); % Correct for timing error

end

Visualization

Plot the constellation diagrams of the received signal, the frequency corrected signal,
and the frequency and timing synchronized signal. While specific constellation points
cannot be indentified in the received signal and only partially identified in the frquency
corrected signal, the timing and frequency synchronized signal aligns with the expected
QAM constellation points.

step(cd1,rxSig)

4-8

 Correct for Symbol Timing and Doppler Offsets

step(cd2,rxCorr)

4-9

4 Featured Examples

step(cd3,rxData)

4-10

 Correct for Symbol Timing and Doppler Offsets

See Also
comm.CarrierSynchronizer | comm.SymbolSynchronizer

4-11

4 Featured Examples

Estimate Turbo Code BER Performance in AWGN

Simulate an end-to-end communication link employing 16-QAM using turbo codes in an
AWGN channel. Estimate the bit error rate.

Initialize Simulation

Set the modulation order and the range of Eb/No values to evaluate. Set the frame length
to 500.

M = 16;

EbNo = (-5:-1);

frmLen = 500;

Initialize the bit error rate vector.

ber = zeros(size(EbNo));

Create a turbo encoder and decoder pair, where the interleaver indices are supplied as
input arguments.

turboEnc = comm.TurboEncoder('InterleaverIndicesSource','Input port');

turboDec = comm.TurboDecoder('InterleaverIndicesSource','Input port', ...

 'NumIterations',4);

Create a QPSK modulator and demodulator pair, where the demodulator outputs soft
bits determined by using a log-likelihood ratio method. The modulator and demodulator
objects are normalized to use an average power of 1 W.

qamModulator = comm.RectangularQAMModulator('ModulationOrder',M, ...

 'BitInput',true, ...

 'NormalizationMethod','Average power');

qamDemodulator = comm.RectangularQAMDemodulator('ModulationOrder',M, ...

 'BitOutput',true, ...

 'NormalizationMethod','Average power', ...

 'DecisionMethod','Log-likelihood ratio', ...

 'VarianceSource','Input port');

Create an AWGN channel and an error rate counter.

awgnChannel = comm.AWGNChannel('EbNo',EbNo,'BitsPerSymbol',log2(M));

4-12

 Estimate Turbo Code BER Performance in AWGN

errorRate = comm.ErrorRate;

Main Processing Loop

The processing loop performs the following steps:

• Generate random binary data
• Generate random interleaver indices
• Turbo encode the data
• Apply 16-QAM modulation
• Pass the modulated signal through an AWGN channel
• Demodulate the noisy signal using an LLR algorithm
• Turbo decode the data
• Calculate the error statistics

for k = 1:length(EbNo)

 % Initialize error statistics vector, noise variance, and channel Eb/No

 errorStats = zeros(1,3);

 noiseVar = 10^(-EbNo(k)/10)*(1/log2(M));

 awgnChannel.EbNo = EbNo(k);

 while errorStats(2) < 100 && errorStats(3) < 1e7

 % Generate random binary data

 data = randi([0 1],frmLen,1);

 % Interleaver indices

 intrlvrInd = randperm(frmLen);

 % Turbo encode the data

 encodedData = turboEnc(data,intrlvrInd);

 % Modulate the encoded data

 modSignal = qamModulator(encodedData);

 % Pass the signal through the AWGN channel

 receivedSignal = awgnChannel(modSignal);

 % Demodulate the received signal

 demodSignal = qamDemodulator(receivedSignal,noiseVar);

4-13

4 Featured Examples

 % Turbo decode the demodulated signal. Because the bit mapping from the

 % demodulator is opposite that expected by the turbo decoder, the

 % decoder input must use the inverse of demodulated signal.

 receivedBits = turboDec(-demodSignal,intrlvrInd);

 % Calculate the error statistics

 errorStats = errorRate(data,receivedBits);

 end

 % Save the BER data and reset the bit error rate object

 ber(k) = errorStats(1);

 reset(errorRate)

end

Plot the bit error rate and compare it to the uncoded bit error rate.

semilogy(EbNo,ber,'-o')

grid

xlabel('Eb/No (dB)')

ylabel('Bit Error Rate')

uncodedBER = berawgn(EbNo,'qam',M); % Estimate of uncoded BER

hold on

semilogy(EbNo,uncodedBER)

legend('Turbo','Uncoded','location','sw')

4-14

 Estimate Turbo Code BER Performance in AWGN

See Also
comm.TurboDecoder | comm.TurboEncoder

4-15

4 Featured Examples

Random Noise Generators
You can generate noise for communication system modeling using the MATLAB
Function block with a random number generator. Both Rayleigh and Rician noise
generators are shown in the example.

Open the model doc_noise_generators.

The noise generators output 1000-by-1 vectors every second, which is equivalent to a
0.001 second sample time.

Run the model. The outputs of the two generators are saved to the MATLAB base
workspace. Plot the histograms of the Rayleigh and Rician variables x and y,
respectively.

4-16

 Random Noise Generators

hist(x,20)

hist(y,20)

4-17

4 Featured Examples

The Rician noise generator has a K-factor of 10, which causes the mean value of the noise
to be larger than that of the Rayleigh distributed noise. Double click on the Rician Noise
Gen block to open the underlying function in the MATLAB editor. Change the K-factor
from 10 to 2.

4-18

 Random Noise Generators

4-19

4 Featured Examples

Run the model and plot the histogram of y.

hist(y,20)

Observe that the mean value of the noise has shifted to the left. The histograms of the
Rician and Rayleigh noise are converging. The two generators produce noise having the
same statistics when the Rician K-factor is 0.

4-20

 Visualize Effects of Frequency-Selective Fading

Visualize Effects of Frequency-Selective Fading

Pass FSK and QPSK signals through a Rayleigh multipath fading channel. Change the
signal bandwidths to observe the impact of the fading channel on the FSK spectrum and
the QPSK constellation.

FSK Modulation in Flat Fading

Set modulation order to 4, the modulated symbol rate to 45 bps, and the frequency
separation to 200 Hz.

M = 4; % Modulation order

symbolRate = 45; % Symbol rate (bps)

freqSep = 200; % Frequency separation (Hz)

Calculate the samples per symbol parameter, sampPerSym, as a function of the
modulation order, frequency separation, and symbol rate. To avoid output signal aliasing,
the product of sampPerSym and symbolRate must be greater than the product of M and
freqSep. Calculate the sample rate of the FSK output signal.

sampPerSym = ceil(M*freqSep/symbolRate);

fsamp = sampPerSym*symbolRate;

Create an FSK modulator.

fskMod = comm.FSKModulator(M, ...

 'FrequencySeparation',freqSep, ...

 'SamplesPerSymbol',sampPerSym, ...

 'SymbolRate',symbolRate);

Set the path delays and average path gains for the fading channel.

pathDelays = [0 3 10]*1e-6; % Discrete delays of three-path channel (s)

avgPathGains = [0 -3 -6]; % Average path gains (dB)

By convention, the delay of the first path is typically set to zero. For subsequent paths,
a 1 microsecond delay corresponds to a 300 m difference in path length. The path delays
and path gains specify the average delay profile of the channel.

Create a Rayleigh channel using the defined parameters. Set the Visualization
property to display the impulse and frequency responses.

channel = comm.RayleighChannel(...

 'SampleRate',fsamp, ...

4-21

4 Featured Examples

 'PathDelays',pathDelays, ...

 'AveragePathGains',avgPathGains, ...

 'MaximumDopplerShift',0.01, ...

 'Visualization','Impulse and frequency responses', ...

 'SamplesToDisplay','10%');

Generate random data symbols and apply FSK modulation.

data = randi([0 3],2000,1);

modSig = fskMod(data);

Plot the spectrum of the FSK modulated signal.

spectrum = dsp.SpectrumAnalyzer('SampleRate',fsamp);

spectrum(modSig)

4-22

 Visualize Effects of Frequency-Selective Fading

The modulated signal is composed of four tones each having approximately 20 dBm peak
power separated by 200 Hz.

Pass the signal through the Rayleigh fading channel and apply AWGN having a 25 dB
signal-to-noise ratio.

snrdB = 25;

rxSig = awgn(channel(modSig),snrdB);

4-23

4 Featured Examples

The impulse and frequency responses show that the channel behaves as though it were
flat. This is because the signal bandwidth, 800 Hz, is much smaller than the coherence
bandwidth, 50 kHz.

Plot the received signal spectrum.

spectrum(rxSig)

4-24

 Visualize Effects of Frequency-Selective Fading

The four tones comprising the FSK signal maintain the same frequency separation and
peak power levels relative to each other. The absolute peak power levels have decreased
due to the fading channel.

FSK Modulation in Frequency-Selective Fading

Increase the symbol rate to 45 kbps and the frequency separation to 200 kHz. Calculate
the new samples per symbol and sample rate parameters.

symbolRate = 45e3;

freqSep = 200e3;

sampPerSym = ceil(M*freqSep/symbolRate);

fsamp = sampPerSym*symbolRate;

Update the FSK modulator properties.

4-25

4 Featured Examples

release(fskMod)

fskMod.SymbolRate = symbolRate;

fskMod.FrequencySeparation = freqSep;

Update the spectrum analyzer sample rate property, sa.SampleRate. Apply FSK
modulation and plot the resulting spectrum.

release(spectrum)

spectrum.SampleRate = sampPerSym*symbolRate;

modSig = fskMod(data);

spectrum(modSig)

The spectrum has the same shape as in the flat-fading case but the four tones are now
separated by 200 kHz.

4-26

 Visualize Effects of Frequency-Selective Fading

Update the channel sample rate property. Pass the signal through the Rayleigh fading
channel and apply AWGN.

release(channel)

channel.SampleRate = fsamp;

rxSig = awgn(channel(modSig),25);

4-27

4 Featured Examples

The impulse and frequency responses show that the multipath fading is frequency
selective.

Plot the received signal spectrum.

spectrum(rxSig)

4-28

 Visualize Effects of Frequency-Selective Fading

There are still four identifiable tones but their relative peak power levels differ due to the
frequency-selective fading. The signal bandwidth, 800 kHz, is larger than the coherence
bandwidth, 50 kHz.

QPSK Modulation in Flat Fading

Set the symbol rate parameter to 500 bps.

symbolRate = 500;

Generate random data symbols and apply QPSK modulation.

data = randi([0 3],10000,1);

modSig = pskmod(data,4,pi/4,'gray');

4-29

4 Featured Examples

Create a Rayleigh channel using the defined parameters. Set the Visualization
property to display the impulse and frequency responses.

fsamp = symbolRate;

channel = comm.RayleighChannel(...

 'SampleRate',fsamp, ...

 'PathDelays',pathDelays, ...

 'AveragePathGains',avgPathGains, ...

 'MaximumDopplerShift',0.01, ...

 'Visualization','Impulse and frequency responses');

Pass the signal through the Rayleigh channel and apply AWGN.

rxSig = awgn(channel(modSig),25);

4-30

 Visualize Effects of Frequency-Selective Fading

4-31

4 Featured Examples

The impulse and frequency responses show that the channel behaves as though it were
flat. This is because the signal bandwidth, 500 Hz, is much smaller than the coherence
bandwidth, 50 kHz. Alternatively, the delay span of the channel (10 microseconds) is
much smaller than the QPSK symbol period (2 milliseconds) so the resultant bandlimited
impulse response is approximately flat.

Plot the constellation.

constDiagram = comm.ConstellationDiagram;

4-32

 Visualize Effects of Frequency-Selective Fading

constDiagram(rxSig)

The QPSK constellation shows the effects of the fading channel; however, the signal still
has four identifiable states.

4-33

4 Featured Examples

QPSK Modulation in Frequency-Selective Fading

Increase the symbol rate to 500 kbps and update the related channel property. Pass the
signal through the Rayleigh channel and apply AWGN.

symbolRate = 500e3;

release(channel)

channel.SampleRate = symbolRate;

rxSig = awgn(channel(modSig),25);

4-34

 Visualize Effects of Frequency-Selective Fading

4-35

4 Featured Examples

The impulse and frequency responses show that the multipath fading is frequency
selective.

Plot the constellation.

constDiagram(rxSig)

4-36

 Visualize Effects of Frequency-Selective Fading

As the signal bandwidth is increased from 500 Hz to 500 kHz, the signal becomes
highly distorted. This distortion is due to the intersymbol interference (ISI) that
comes from time dispersion of the wideband signal. The delay span of the channel (10
microseconds) is now larger than the QPSK symbol period (2 microseconds) so the
resultant bandlimited impulse response is no longer flat. Alternatively, the signal
bandwidth is much larger than the coherence bandwidth, 50 kHz.

4-37

4 Featured Examples

Correct Frequency Offset QAM Using Coarse and Fine
Synchronization

Correct phase and frequency offsets for a QAM signal in an AWGN channel. Coarse
frequency estimator and carrier synchronizer System objects™ are used to compensate
for a significant offset.

Set the example parameters.

fs = 10000; % Sample rate (Hz)

sps = 4; % Samples per symbol

M = 16; % Modulation order

k = log2(M); % Bits per symbol

Create an AWGN channel System object™.

awgnChannel = comm.AWGNChannel('EbNo',15,'BitsPerSymbol',k,'SamplesPerSymbol',sps);

Create a constellation diagram object to visualize the effects of the carrier
synchronization.

constDiagram = comm.ConstellationDiagram(...

 'ReferenceConstellation',qammod(0:M-1,M), ...

 'XLimits',[-5 5],'YLimits',[-5 5]);

Create a QAM coarse frequency estimator to roughly estimate the frequency offset. This
is used to reduce the frequency offset of the signal passed to the carrier synchronizer. In
this case, a frequency estimate to within 10 Hz is sufficient.

coarse = comm.QAMCoarseFrequencyEstimator('SampleRate',fs, ...

 'FrequencyResolution',10);

Create a carrier synchronizer System object. Because of the coarse frequency correction,
the carrier synchronizer will converge quickly even though the normalized bandwidth is
set to a low value. Lower normalized bandwidth values enable better correction.

fine = comm.CarrierSynchronizer(...

 'DampingFactor',0.7, ...

 'NormalizedLoopBandwidth',0.005, ...

 'SamplesPerSymbol',sps,...

 'Modulation','QAM');

4-38

 Correct Frequency Offset QAM Using Coarse and Fine Synchronization

Create phase and frequency offset objects. pfo is used to introduce a phase and
frequency offset of 30 degrees and 250 Hz, respectively. pfc is used to correct the offset
in the received signal by using the output of the coarse frequency estimator.

pfo = comm.PhaseFrequencyOffset(...

 'FrequencyOffset',250,...

 'PhaseOffset',30,...

 'SampleRate',fs);

pfc = comm.PhaseFrequencyOffset('FrequencyOffsetSource','Input port', ...

 'SampleRate',fs);

Generate random data symbols and apply 16-QAM modulation.

data = randi([0 M-1],10000,1);

txSig = qammod(data,M);

Pass the signal through an AWGN channel and apply a phase and frequency offset.

rxSig = awgnChannel(pfo(txSig));

Estimate the frequency offset and compensate for it using PFC. Plot the constellation
diagram of the output, syncCoarse. From the spiral nature of the diagram, you can see
that the phase and frequency offsets are not corrected.

freqEst = coarse(rxSig);

syncCoarse = pfc(rxSig,-freqEst);

constDiagram(syncCoarse)

4-39

4 Featured Examples

Apply fine frequency correction to the signal by using the carrier synchronizer object.

rxData = fine(syncCoarse);

Display the constellation diagram of the last 1000 symbols. You can see that these
symbols are aligned with the reference constellation because the carrier synchronizer has
converged to a solution.

4-40

 Correct Frequency Offset QAM Using Coarse and Fine Synchronization

release(constDiagram)

constDiagram(rxData(9001:10000))

4-41

4 Featured Examples

Adjust Carrier Synchronizer Damping Factor to Correct Frequency
Offset

Attempt to correct for a frequency offset using the carrier synchronizer object. Increase
the damping factor of the synchronizer and determine if the offset was corrected.

Set the modulation order, sample rate, frequency offset, and signal-to-noise ratio
parameters.

M = 8;

fs = 1e6;

foffset = 1000;

snrdb = 20;

Create a phase frequency offset object to introduce a frequency offset to a modulated
signal. Create a constellation diagram object.

pfo = comm.PhaseFrequencyOffset('SampleRate',fs, ...

 'FrequencyOffset',foffset);

constDiagram = comm.ConstellationDiagram('ReferenceConstellation',pskmod(0:M-1,M,pi/M));

Create a carrier synchronizer object to correct for the frequency offset.

carriersync = comm.CarrierSynchronizer('Modulation','8PSK', ...

 'DampingFactor',0.05,'NormalizedLoopBandwidth',0.01);

The main processing loop includes these steps:

• Generate random data.
• Apply 8-PSK modulation.
• Introduce a frequency offset.
• Pass the signal through an AWGN channel.
• Correct for the frequency offset.
• Display the constellation diagram.

for k = 1:200

 data = randi([0 M-1],1000,1);

 modSig = pskmod(data,M);

 txSig = pfo(modSig);

4-42

 Adjust Carrier Synchronizer Damping Factor to Correct Frequency Offset

 rxSig = awgn(txSig,snrdb);

 syncOut = carriersync(rxSig);

 constDiagram(syncOut)

end

The constellation points cannot be clearly identified indicating that the carrier
synchronizer is unable to compensate for the frequency offset.

4-43

4 Featured Examples

Determine the normalized pull-in range, the maximum frequency lock delay, and the
maximum phase lock delay by using the info function.

syncInfo = info(carriersync)

syncInfo =

 struct with fields:

 NormalizedPullInRange: 0.0044

 MaxFrequencyLockDelay: 78.9568

 MaxPhaseLockDelay: 130

Convert the normalised pull-in range from radians to cycles. Compare the normalized
frequency offset to the pull-in range.

[foffset/fs syncInfo.NormalizedPullInRange/(2*pi)]

ans =

 1.0e-03 *

 1.0000 0.7071

The offset is greater than the pull-in range. This is reason that the carrier synchronizer
failed to correct the frequency offset.

Change the damping factor of the synchronizer to 0.707.

carriersync.DampingFactor = 0.707;

Repeat the main processing loop.

for k = 1:200

 data = randi([0 M-1],1000,1);

 modSig = pskmod(data,M);

 txSig = pfo(modSig);

 rxSig = awgn(txSig,snrdb);

 syncOut = carriersync(rxSig);

 constDiagram(syncOut)

end

4-44

 Adjust Carrier Synchronizer Damping Factor to Correct Frequency Offset

There are now eight observable clusters, which shows that the frequency offset was
corrected.

Determine the new pull-in range. The normalized offset is less than the pull-in range.
This explains why the carrier synchronizer was able to correct the offset.

syncInfo = info(carriersync);

4-45

4 Featured Examples

[foffset/fs syncInfo.NormalizedPullInRange/(2*pi)]

ans =

 0.0010 0.0100

4-46

 Modulate and Demodulate 8-PSK Signal

Modulate and Demodulate 8-PSK Signal

Open the 8-PSK model. The model generates an 8-PSK signal, applies white noise,
displays the resulting constellation diagram, and computes the error statistics.

Run the model.

4-47

4 Featured Examples

The error statistics are collected in vector ErrorVec. Because Eb/No is 15 dB, there are
no measured symbol errors.

Number of symbol errors = 0

Change the Eb/No of the AWGN Channel block from 15 dB to 5 dB. The increase in the
noise is shown in the constellation diagram.

4-48

 Modulate and Demodulate 8-PSK Signal

Because of the increase in the noise level, the number of symbol errors is greater than
zero.

Number of symbol errors = 13

4-49

4 Featured Examples

Binary to Gray Conversion in Simulink

Open the Binary-to-Gray model. The model converts a binary sequence to a Gray-coded
sequence and vice versa by using Data Mapper blocks.

Run the model.

The Display blocks show the natural binary and Gray-coded sequence ordering.

4-50

 Read Baseband Signal from File

Read Baseband Signal from File

Reads a baseband signal from a saved file.

1 Load the model by typing doc_baseband_reader_example at the command line.

2 Run the model.

4-51

4 Featured Examples

The file, example.bb, contains 10,000 samples having a sample rate of 1 Hz. The
model runs for 12,000 s, which exceeds the amount of saved data. As a result, the
last 2000 samples are zero padded.

3 Open the Baseband File Reader block, and click on the Repeatedly read the file
check box. Rerun the model.

4-52

 Read Baseband Signal from File

After 10,000 s, the file is read again so the samples from 10,000 to 12,000 s are a
repeat of the first 2000 samples.

4-53

4 Featured Examples

Write Baseband Signal to File

Generate and write a QPSK-modulated signal to a file. Then, read the file and plot the
constellation diagram of the signal.

1 Type doc_baseband_writer_ex1 at the command prompt to open the first model.

2 Run the model. The noisy QPSK data is saved to file bbw_example.bb.
3 Close the model. Type doc_baseband_writer_ex2 at the command prompt to open

the second model.

4 Run the model. The saved data is displayed by the constellation diagram.

4-54

 Write Baseband Signal to File

4-55

4 Featured Examples

Detect Binary Preamble in Packet

Open the Detect Binary Preamble model. The model creates a 40-bit packet consisting
of two 6-bit preamble sequences and two 14-bit random data sequences. Detect the
preamble locations by using the Preamble Detector block.

Run the model.

The display shows the numbers 6 and 26. These correspond to the locations at the end of
the two preambles.

4-56

 Detect Complex Preamble in Packet

Detect Complex Preamble in Packet

Open the model. The model creates a packet by generating a complex preamble and
prepending it to a sequence of QPSK symbols. The packet passes through a noisy channel
and is input to a Preamble Detector block. The preamble locations and the detection
metric outputs are displayed by two Time Scope blocks.

Run the model.

4-57

4 Featured Examples

4-58

 Detect Complex Preamble in Packet

There are many preamble locations shown for each 1 s frame. This is because the
detection metric exceeds the threshold multiple times in each frame. This indicates that
the detection threshold is too low. Ideally, there should only be a single location shown
for each frame because there is only one preamble. Looking at the detection metric plot,
it suggests that a threshold of 15 will result in the selection of the peak detection metric.

Change the detection threshold from 3 to 15. Rerun the model.

4-59

4 Featured Examples

In each frame, the location index is 16. This is correct because the preamble is 16
symbols long.

4-60

5

Adaptive Equalizer Examples

• “Adaptive Equalization” on page 5-2
• “Adaptive Equalization” on page 5-13
• “Equalize BSPK Signal” on page 5-25
• “Compare RLS and LMS Algorithms” on page 5-29

5 Adaptive Equalizer Examples

Adaptive Equalization

This example shows how to a model a communication link with PSK modulation, raised
cosine pulse shaping, multipath fading, and adaptive equalization.

The example sets up three equalization scenarios, and calls a separate script to
execute the processing loop multiple times for each scenario. Each call corresponds to
a transmission block. The pulse shaping and multipath fading channel retain state
information from one block to the next. For visualizing the impact of channel fading on
adaptive equalizer convergence, the simulation resets the equalizer state every block.

To experiment with different simulation settings, you can edit the example. For instance,
you can set the ResetBeforeFiltering property of the equalizer object to 0, which will
cause the equalizer to retain state from one block to the next.

Transmission Block

Set parameters related to the transmission block which is composed of three parts:
training sequence, payload, and tail sequence. All three use the same PSK scheme; the
training and tail sequences are used for equalization. We use the default random number
generator to ensure the repeatability of the results.

Rsym = 1e6; % Symbol rate (Hz)

nTrain = 100; % Number of training symbols

nPayload = 400; % Number of payload symbols

nTail = 20; % Number of tail symbols

% Set random number generator for repeatability

hStream = RandStream.create('mt19937ar', 'seed', 12345);

PSK Modulation

Configure the PSK modulation and demodulation System objects™.

bitsPerSym = 2; % Number of bits per PSK symbol

M = 2^bitsPerSym; % Modulation order

hPSKMod = comm.PSKModulator(M, ...

 'PhaseOffset',0, ...

 'SymbolMapping','Binary');

hPSKDemod = comm.PSKDemodulator(M, ...

 'PhaseOffset',0, ...

 'SymbolMapping','Binary');

PSKConstellation = constellation(hPSKMod).'; % PSK constellation

5-2

 Adaptive Equalization

Training and Tail Sequences

Generate the training and tail sequences.

xTrainData = randi(hStream, [0 M-1], nTrain, 1);

xTailData = randi(hStream, [0 M-1], nTail, 1);

xTrain = step(hPSKMod,xTrainData);

xTail = step(hPSKMod,xTailData);

Transmit and Receive Filters

Configure raised cosine transmit and receive filter System objects. The filters incorporate
upsampling and downsampling, respectively.

chanFilterSpan = 8; % Filter span in symbols

sampPerSymChan = 4; % Samples per symbol through channels

hTxFilt = comm.RaisedCosineTransmitFilter(...

 'RolloffFactor',0.25, ...

 'FilterSpanInSymbols',chanFilterSpan, ...

 'OutputSamplesPerSymbol',sampPerSymChan);

hRxFilt = comm.RaisedCosineReceiveFilter(...

 'RolloffFactor',0.25, ...

 'FilterSpanInSymbols',chanFilterSpan, ...

 'InputSamplesPerSymbol',sampPerSymChan, ...

 'DecimationFactor',sampPerSymChan);

% Calculate the samples per symbol after the receive filter

sampPerSymPostRx = sampPerSymChan/hRxFilt.DecimationFactor;

% Calculate the delay in samples from both channel filters

chanFilterDelay = chanFilterSpan*sampPerSymPostRx;

AWGN Channel

Configure an AWGN channel System object with the NoiseMethod property set to
Signal to noise ratio (Es/No) and Es/No set to 20 dB.

hAWGNChan = comm.AWGNChannel(...

 'NoiseMethod','Signal to noise ratio (Es/No)', ...

 'EsNo',20, ...

 'SamplesPerSymbol',sampPerSymChan);

5-3

5 Adaptive Equalizer Examples

Simulation 1: Linear Equalization for Frequency-Flat Fading

Begin with single-path, frequency-flat fading channel. For this channel, the receiver uses
a simple 1-tap LMS (least mean square) equalizer, which implements automatic gain and
phase control.

The script commadapteqloop.m runs multiple times. Each run corresponds to a
transmission block. The equalizer resets its state and weight every transmission block.
To retain state from one block to the next, you can set the ResetBeforeFiltering
property of the equalizer object to false.

Before the first run, commadapteqloop.m displays the Rayleigh channel System object
and the properties of the equalizer object. For each run, a MATLAB figure shows signal
processing visualizations. The red circles in the signal constellation plots correspond
to symbol errors. In the "Weights" plot, blue and magenta lines correspond to real and
imaginary parts, respectively.

simName = 'Linear equalization for frequency-flat fading'; % Used to label figure window

% Configure a frequency-flat Rayleigh channel System object with the

% RandomStream property set to 'mt19937ar with seed' for repeatability.

hRayleighChan = comm.RayleighChannel(...

 'SampleRate',Rsym*sampPerSymChan, ...

 'MaximumDopplerShift',30);

% Configure an adaptive equalizer object

nWeights = 1; % Single weight

stepSize = 0.1; % Step size for LMS algorithm

alg = lms(stepSize); % Adaptive algorithm object

eqObj = lineareq(nWeights,alg,PSKConstellation); % Equalizer object

% Delay in symbols from the equalizer

eqDelayInSym = (eqObj.RefTap-1)/sampPerSymPostRx;

% Link simulation

nBlocks = 50; % Number of transmission blocks in simulation

for block = 1:nBlocks

 commadapteqloop;

end

System: comm.RayleighChannel

 Properties:

 SampleRate: 4000000

 PathDelays: 0

5-4

 Adaptive Equalization

 AveragePathGains: 0

 NormalizePathGains: true

 MaximumDopplerShift: 30

 DopplerSpectrum: [1x1 struct]

 RandomStream: 'mt19937ar with seed'

 Seed: 73

 PathGainsOutputPort: false

 EqType: 'Linear Equalizer'

 AlgType: 'LMS'

 nWeights: 1

 nSampPerSym: 1

 RefTap: 1

 SigConst: [1.0000 + 0.0000i 0.0000 + 1.0000i -1.0000 + 0.0000i -0.0000 - 1.0000i]

 StepSize: 0.1000

 LeakageFactor: 1

 Weights: 0

 WeightInputs: 0

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

5-5

5 Adaptive Equalizer Examples

Simulation 2: Linear Equalization for Frequency-Selective Fading

Simulate a three-path, frequency-selective Rayleigh fading channel. The receiver uses an
8-tap linear RLS (recursive least squares) equalizer with symbol-spaced taps.

simName = 'Linear equalization for frequency-selective fading';

% Reset transmit and receive filters

reset(hTxFilt);

5-6

 Adaptive Equalization

reset(hRxFilt);

% Set the Rayleigh channel System object to be frequency-selective

release(hRayleighChan);

hRayleighChan.PathDelays = [0 0.9 1.5]/Rsym;

hRayleighChan.AveragePathGains = [0 -3 -6];

% Configure an adaptive equalizer

nWeights = 8;

forgetFactor = 0.99; % RLS algorithm forgetting factor

alg = rls(forgetFactor); % RLS algorithm object

eqObj = lineareq(nWeights,alg,PSKConstellation);

eqObj.RefTap = 3; % Reference tap

eqDelayInSym = (eqObj.RefTap-1)/sampPerSymPostRx;

% Link simulation and store BER values

BERvect = zeros(1,nBlocks);

for block = 1:nBlocks

 commadapteqloop;

 BERvect(block) = BEREq;

end

avgBER2 = mean(BERvect)

System: comm.RayleighChannel

 Properties:

 SampleRate: 4000000

 PathDelays: [0 9e-07 1.5e-06]

 AveragePathGains: [0 -3 -6]

 NormalizePathGains: true

 MaximumDopplerShift: 30

 DopplerSpectrum: [1x1 struct]

 RandomStream: 'mt19937ar with seed'

 Seed: 73

 PathGainsOutputPort: false

 EqType: 'Linear Equalizer'

 AlgType: 'RLS'

 nWeights: 8

 nSampPerSym: 1

 RefTap: 3

 SigConst: [1.0000 + 0.0000i 0.0000 + 1.0000i -1.0000 + 0.0000i -0.0000 - 1.0000i]

 ForgetFactor: 0.9900

 InvCorrInit: 0.1000

 InvCorrMatrix: [8x8 double]

5-7

5 Adaptive Equalizer Examples

 Weights: [0 0 0 0 0 0 0 0]

 WeightInputs: [0 0 0 0 0 0 0 0]

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

avgBER2 =

 3.0000e-04

5-8

 Adaptive Equalization

Simulation 3: Decision feedback Equalization (DFE) for Frequency-Selective Fading

The receiver uses a DFE with a six-tap fractionally spaced forward filter (two samples
per symbol) and two feedback weights. The DFE uses the same RLS algorithm as in
Simulation 2. The receive filter structure is reconstructed to account for the increased
number of samples per symbol.

simName = 'Decision feedback equalization (DFE) for frequency-selective fading';

% Reset transmit filter and adjust receive filter decimation factor

reset(hTxFilt);

release(hRxFilt);

hRxFilt.DecimationFactor = 2;

sampPerSymPostRx = sampPerSymChan/hRxFilt.DecimationFactor;

chanFilterDelay = chanFilterSpan*sampPerSymPostRx;

% Reset fading channel

reset(hRayleighChan);

% Configure an adaptive equalizer object

nFwdWeights = 6; % Number of feedforward equalizer weights

nFbkWeights = 2; % Number of feedback filter weights

eqObj = dfe(nFwdWeights, nFbkWeights,alg,PSKConstellation,sampPerSymPostRx);

eqObj.RefTap = 3;

eqDelayInSym = (eqObj.RefTap-1)/sampPerSymPostRx;

for block = 1:nBlocks

 commadapteqloop;

 BERvect(block) = BEREq;

end

avgBER3 = mean(BERvect)

System: comm.RayleighChannel

 Properties:

 SampleRate: 4000000

 PathDelays: [0 9e-07 1.5e-06]

 AveragePathGains: [0 -3 -6]

 NormalizePathGains: true

 MaximumDopplerShift: 30

 DopplerSpectrum: [1x1 struct]

 RandomStream: 'mt19937ar with seed'

 Seed: 73

 PathGainsOutputPort: false

5-9

5 Adaptive Equalizer Examples

 EqType: 'Decision Feedback Equalizer'

 AlgType: 'RLS'

 nWeights: [6 2]

 nSampPerSym: 2

 RefTap: 3

 SigConst: [1.0000 + 0.0000i 0.0000 + 1.0000i -1.0000 + 0.0000i -0.0000 - 1.0000i]

 ForgetFactor: 0.9900

 InvCorrInit: 0.1000

 InvCorrMatrix: [8x8 double]

 Weights: [0 0 0 0 0 0 0 0]

 WeightInputs: [0 0 0 0 0 0 0 0]

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

avgBER3 =

 0

5-10

 Adaptive Equalization

Summary

This example showed the relative performance of linear and decision feedback equalizers
in both frequency-flat and frequency-selective fading channels. It showed how a one-tap
equalizer is sufficient to compensate for a frequency-flat channel, but that a frequency-
selective channel requires an equalizer with multiple taps. Finally, it showed that a
decision feedback equalizer is superior to a linear equalizer in a frequency-selective
channel.

5-11

5 Adaptive Equalizer Examples

Appendix

This example uses the following script and helper functions:

• commadapteqloop.m
• commadapteq_checkvars.m
• commadapteq_graphics.m

5-12

 Adaptive Equalization

Adaptive Equalization

This model shows the behavior of adaptive equalizer algorithms at a receiver for
modulated data transmitted along a channel.

Structure of the Example

The example includes two equalizers, a reference equalizer that uses the least means
square (LMS) algorithm and a configurable equalizer whose algorithm you can select
from these choices:

• Least Mean Square (LMS)
• Sign LMS
• Normalized LMS
• Variable Step-Size LMS
• Recursive Least Squares (RLS)
• Constant Modulus Algorithm (CMA)

The example also creates plots that can help you understand how different algorithms
behave.

On the MATLAB command line, open the model doc_equalizationsim.

doc_equalizationsim

5-13

5 Adaptive Equalizer Examples

Experimenting with the Example

This example provides several ways for you to change settings and observe the results.

Initial Settings

The Model Parameters block enables you to vary some parameters of the model,
including

• The algorithm for the configurable equalizer
• The modulation scheme (symbol constellation)
• Channel coefficients

5-14

 Adaptive Equalization

• The number of coefficients, or taps, in both equalizers

To access these parameters, double-click the Model Parameters block.

Cost Function and Initial Conditions

You can choose an initial set of weights for the equalizers when the Model Parameters
block has the Number of equalizer coefficients set to 2 and the Symbol
Constellation set to BPSK. To chose the initial set of weights, use this procedure:

1 Double-click the Plot Cost Function block to open a contour plot of the MSE cost
function (as well as the constant modulus cost function if you selected CMA as the
algorithm for the configurable equalizer).

2 Click in the plotting window to choose an initial set of weights for the equalizers in
the model. Your choice takes effect the next time you run the simulation.

Equalizer Mode

During the simulation, each of the equalizer types (other than CMA) is capable of
operating in training mode or decision-directed mode. In training mode, the desired
symbol sequence exactly matches the transmitted symbol sequence (i.e., the receiver has
knowledge of the transmitted data in this mode). In decision-directed mode, the "desired"
symbols are derived from the output of the decision device. You can toggle between
training and decision-directed mode by double-clicking the Switch block in the model.

Results and Displays

Error Statistics

When you run the simulation, the display labeled BER Results Reference LMS shows
error statistics for the link with the reference equalizer, while the display labeled BER
Results shows error statistics for the link with the configurable equalizer. In particular,
each set of error statistics is a three-element vector containing the calculated bit error
rate (BER), the number of errors observed, and the number of bits processed.

5-15

5 Adaptive Equalizer Examples

You can reset the BER statistics during the simulation by double-clicking the Switch
block connected to the Rst port of the Error Rate Calculation blocks.

Scope Windows

During the simulation the model creates plots that show:

• A scatter plot of the received signal at the output of the channel.

5-16

 Adaptive Equalization

• An MSE convergence plot where you can see that the equalizers' cost functions
converge to the minimum MSE.

• The real part of the weights for the reference, configurable, and optimum equalizers.

5-17

5 Adaptive Equalizer Examples

• The imaginary part of the weights for the reference, configurable, and optimum
equalizers.

5-18

 Adaptive Equalization

• The frequency responses of the channel, the channel after equalization (combined),
and the equalizer itself. You can see that the frequency response of the equalizer
is roughly the inverse of the channel response and that the post equalization or
combined response is flatter.

5-19

5 Adaptive Equalizer Examples

• A scatter plot of the signal equalized by the reference equalizer.

5-20

 Adaptive Equalization

• A scatter plot of the signal equalized by the configurable equalizer.

5-21

5 Adaptive Equalizer Examples

• The cost functions for the equalizers, on the same axes with the minimum MSE.
When the Number of equalizer coefficients parameter in the Model Parameters
block is set to 2 and the Symbol Constellation parameter is set to BPSK, the model
produces an additional plot at the end of a simulation. The new plot shows the
trajectory of the two-element weight vector for each of the equalizers. On the same
set of axes is a contour plot of the MSE cost function (or the constant modulus cost
function, in case you selected CMA as the algorithm for the configurable equalizer).

5-22

 Adaptive Equalization

You can see from the plot how the adaptive algorithm causes the weights to change so
as to minimize the cost function.

The simulation runs more slowly when it is updating all the plots. To close the plotting
windows and speed up the simulation, double-click the icon labeled Close Scopes.

To generate executable code, you will need to comment out the Plot Results subsystem,
as it does not support code generation. Use set_param(‘doc_equalizersim/Plot
Results’,’Commented’,’on’) to do this and generate code for the model.

Selected Bibliography

[1] Haykin, S., Adaptive Filter Theory, Third Edition, Upper Saddle River, NJ, Prentice
Hall, 1996.

5-23

5 Adaptive Equalizer Examples

[2] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chicester,
England, Wiley, 1998.

[3] Johnson, C. R., et al., “Blind Equalization Using the Constant Modulus Criterion: A
Review”, Proc. IEEE, Vol. 86, No. 10, October 1998.

5-24

 Equalize BSPK Signal

Equalize BSPK Signal

Equalize a BPSK signal using a linear equalizer with an least mean square (LMS)
algorithm.

Generate random binary data and apply BPSK modulation.

data = randi([0 1],1000,1);

modData = pskmod(data,2);

Apply two-tap static fading to the modulated signal.

rxSig = conv(modData,[0.5 0.05]);

Create an LMS adaptive algorithm object with a step size of 0.06.

alg = lms(0.06);

Create a linear equalizer object having 8 taps using the previously created algorithm
object. Set the reference tap index to 4.

eqlms = lineareq(8,alg);

eqlms.RefTap = 4;

Equalize the received signal, rxSig, while using the first 200 data bits as a training
sequence.

trSeq = data(1:200);

[eqSig,~,e] = equalize(eqlms,rxSig,trSeq);

Filter and plot the power of the received (nonequalized) signal. The magnitude of the
signal has been attenuated by the channel.

rxSigPwr = filter(0.1*ones(10,1),1,abs(rxSig)).^2;

plot(rxSigPwr)

title('Received Signal')

xlabel('Bits')

ylabel('Power (W)')

5-25

5 Adaptive Equalizer Examples

Plot the equalized signal. The signal reaches the intended power level of 1 W.

eqSigPwr = filter(0.1*ones(10,1),1,abs(eqSig)).^2;

plot(eqSigPwr)

title('Equalized Signal')

xlabel('Bits')

ylabel('Power (W)')

5-26

 Equalize BSPK Signal

Plot the magnitude of the error estimate, e. The error decreases until it is nearly zero
after 400 bits.

plot(abs(e))

title('Error Estimate')

xlabel('Bits')

ylabel('Amplitude (V)')

5-27

5 Adaptive Equalizer Examples

5-28

 Compare RLS and LMS Algorithms

Compare RLS and LMS Algorithms

Equalize a QAM signal passed through a frequency-selective fading channel using RLS
and LMS algorithms. Compare the performance of the two algorithms.

Specify the modulation order. Generate the corresponding QAM reference constellation.

M = 16;

sigConst = qammod(0:M-1,M,'UnitAveragePower',true);

Create a frequency-selective static channel having three taps.

rchan = comm.RayleighChannel('SampleRate',1000, ...

 'PathDelays',[0 1e-3 2e-3],'AveragePathGains',[0 -3 -6], ...

 'MaximumDopplerShift',0, ...

 'RandomStream','mt19937ar with seed','Seed',73);

RLS Equalizer

Create an RLS equalizer object.

eqrls = lineareq(6,rls(0.99,0.1));

eqrls.SigConst = sigConst;

eqrls.ResetBeforeFiltering = 0;

Generate and QAM modulate a random training sequence. Pass the sequence through
the Rayleigh fading channel. Pass the received signal and the training signal through the
equalizer to set the equalizer tap weights.

trainData = randi([0 M-1],200,1);

trainSig = qammod(trainData,M,'UnitAveragePower',true);

rxSig = rchan(trainSig);

[~,~,errorSig] = equalize(eqrls,rxSig,trainSig);

Plot the magnitude of the error estimate.

plot(abs(errorSig))

title('Error Estimate, RLS Equalizer')

xlabel('Symbols')

ylabel('Amplitude')

5-29

5 Adaptive Equalizer Examples

The error is nearly eliminated within 200 symbols.

Transmit a QAM signal through a frequency-selective channel. Equalize the received
signal using the previously 'trained' RLS equalizer. Measure the time required to execute
the processing loop.

tic

for k = 1:20

 data = randi([0 M-1],1000,1); % Random message

 txSig = qammod(data,M,'UnitAveragePower',true);

 % Introduce channel distortion.

 rxSig = rchan(txSig);

5-30

 Compare RLS and LMS Algorithms

 % Equalize the received signal.

 eqSig = equalize(eqrls,rxSig);

end

rlstime = toc;

Plot the constellation diagram of the received and equalized signals.

h = scatterplot(rxSig,1,0,'c.');

hold on

scatterplot(eqSig,1,0,'b.',h)

legend('Received Signal','Equalized Signal')

title('RLS Equalizer')

hold off

5-31

5 Adaptive Equalizer Examples

The equalizer removed the effects of the fading channel.

LMS Equalizer

Repeat the equalization process with an LMS equalizer. Create an LMS equalizer object.

eqlms = lineareq(6,lms(0.03));

eqlms.SigConst = sigConst;

eqlms.ResetBeforeFiltering = 0;

Train the LMS equalizer.

trainData = randi([0 M-1],1000,1);

trainSig = qammod(trainData,M,'UnitAveragePower',true);

rxSig = rchan(trainSig);

[~,~,errorSig] = equalize(eqlms,rxSig,trainSig);

Plot the magnitude of the error estimate.

plot(abs(errorSig))

title('Error Estimate, LMS Equalizer')

xlabel('Symbols')

ylabel('Amplitude')

5-32

 Compare RLS and LMS Algorithms

Training the LMS equalizer requires 1000 symbols.

Transmit a QAM signal through the same frequency-selective channel. Equalize the
received signal using the previously 'trained' LMS equalizer. Measure the time required
to execute the processing loop.

tic

for k = 1:20

 data = randi([0 M-1],1000,1); % Random message

 txSig = qammod(data,M,'UnitAveragePower',true);

 % Introduce channel distortion.

 rxSig = rchan(txSig);

5-33

5 Adaptive Equalizer Examples

 % Equalize the received signal.

 eqSig = equalize(eqlms,rxSig);

end

lmstime = toc;

Plot the constellation diagram of the received and equalized signals.

h = scatterplot(rxSig,1,0,'c.');

hold on

scatterplot(eqSig,1,0,'b.',h)

legend('Received Signal','Equalized Signal')

title('LMS Equalizer')

The equalizer removes the effects of the fading channel.

5-34

 Compare RLS and LMS Algorithms

Compare the loop execution time for the two equalizer algorithms.

[rlstime lmstime]

ans =

 5.3701 2.8156

The LMS algorithm is more computationally efficient as it took 50% of the time to
execute the processing loop. However, the training sequence required by the LMS
algorithm is 5 times longer.

5-35

6

System Design

• “Source Coding” on page 6-2
• “Error Detection and Correction” on page 6-15
• “Interleaving” on page 6-153
• “Digital Modulation” on page 6-171
• “Analog Passband Modulation” on page 6-201
• “Phase-Locked Loops” on page 6-208
• “Equalization” on page 6-212
• “Multiple-Input Multiple-Output (MIMO)” on page 6-248
• “Huffman Coding” on page 6-255
• “Differential Pulse Code Modulation” on page 6-258
• “Compand a Signal” on page 6-262
• “Arithmetic Coding” on page 6-264
• “Quantization” on page 6-266

6 System Design

Source Coding

In this section...

“Represent Partitions” on page 6-2
“Represent Codebooks” on page 6-3
“Determine Which Interval Each Input Is In” on page 6-3
“Optimize Quantization Parameters” on page 6-4
“Differential Pulse Code Modulation” on page 6-5
“Optimize DPCM Parameters” on page 6-7
“Compand a Signal” on page 6-8
“Huffman Coding” on page 6-10
“Arithmetic Coding” on page 6-12
“Quantize a Signal” on page 6-13

Represent Partitions

Scalar quantization is a process that maps all inputs within a specified range to a
common value. This process maps inputs in a different range of values to a different
common value. In effect, scalar quantization digitizes an analog signal. Two parameters
determine a quantization: a partition and a codebook.

A quantization partition defines several contiguous, nonoverlapping ranges of values
within the set of real numbers. To specify a partition in the MATLAB environment, list
the distinct endpoints of the different ranges in a vector.

For example, if the partition separates the real number line into the four sets

• {x: x ≤ 0}
• {x: 0< x ≤ 1}
• {x: 1 < x ≤ 3}
• {x: 3 < x}

then you can represent the partition as the three-element vector

partition = [0,1,3];

6-2

 Source Coding

The length of the partition vector is one less than the number of partition intervals.

Represent Codebooks

A codebook tells the quantizer which common value to assign to inputs that fall into each
range of the partition. Represent a codebook as a vector whose length is the same as the
number of partition intervals. For example, the vector

codebook = [-1, 0.5, 2, 3];

is one possible codebook for the partition [0,1,3].

Determine Which Interval Each Input Is In

The quantiz function also returns a vector that tells which interval each input is in. For
example, the output below says that the input entries lie within the intervals labeled 0,
6, and 5, respectively. Here, the 0th interval consists of real numbers less than or equal
to 3; the 6th interval consists of real numbers greater than 8 but less than or equal to 9;
and the 5th interval consists of real numbers greater than 7 but less than or equal to 8.

partition = [3,4,5,6,7,8,9];

index = quantiz([2 9 8],partition)

The output is

index =

 0

 6

 5

If you continue this example by defining a codebook vector such as

codebook = [3,3,4,5,6,7,8,9];

then the equation below relates the vector index to the quantized signal quants.

quants = codebook(index+1);

This formula for quants is exactly what the quantiz function uses if you instead phrase
the example more concisely as below.

6-3

6 System Design

partition = [3,4,5,6,7,8,9];

codebook = [3,3,4,5,6,7,8,9];

[index,quants] = quantiz([2 9 8],partition,codebook);

Optimize Quantization Parameters

• “Section Overview” on page 6-4
• “Example: Optimizing Quantization Parameters” on page 6-4

Section Overview

Quantization distorts a signal. You can reduce distortion by choosing appropriate
partition and codebook parameters. However, testing and selecting parameters for
large signal sets with a fine quantization scheme can be tedious. One way to produce
partition and codebook parameters easily is to optimize them according to a set of so-
called training data.

Note: The training data you use should be typical of the kinds of signals you will actually
be quantizing.

Example: Optimizing Quantization Parameters

The lloyds function optimizes the partition and codebook according to the Lloyd
algorithm. The code below optimizes the partition and codebook for one period of a
sinusoidal signal, starting from a rough initial guess. Then it uses these parameters to
quantize the original signal using the initial guess parameters as well as the optimized
parameters. The output shows that the mean square distortion after quantizing is much
less for the optimized parameters. The quantiz function automatically computes the
mean square distortion and returns it as the third output parameter.

% Start with the setup from 2nd example in "Quantizing a Signal."

t = [0:.1:2*pi];

sig = sin(t);

partition = [-1:.2:1];

codebook = [-1.2:.2:1];

% Now optimize, using codebook as an initial guess.

[partition2,codebook2] = lloyds(sig,codebook);

[index,quants,distor] = quantiz(sig,partition,codebook);

[index2,quant2,distor2] = quantiz(sig,partition2,codebook2);

% Compare mean square distortions from initial and optimized

6-4

 Source Coding

[distor, distor2] % parameters.

The output is

ans =

 0.0148 0.0024

Differential Pulse Code Modulation

• “Section Overview” on page 6-5
• “DPCM Terminology” on page 6-5
• “Represent Predictors” on page 6-6
• “Example: DPCM Encoding and Decoding” on page 6-6

Section Overview

The quantization in the section “Quantize a Signal” on page 6-13 requires no a
priori knowledge about the transmitted signal. In practice, you can often make educated
guesses about the present signal based on past signal transmissions. Using such
educated guesses to help quantize a signal is known as predictive quantization. The most
common predictive quantization method is differential pulse code modulation (DPCM).

The functions dpcmenco, dpcmdeco, and dpcmopt can help you implement a DPCM
predictive quantizer with a linear predictor.

DPCM Terminology

To determine an encoder for such a quantizer, you must supply not only a partition
and codebook as described in “Represent Partitions” on page 6-2 and “Represent
Codebooks” on page 6-3, but also a predictor. The predictor is a function that the
DPCM encoder uses to produce the educated guess at each step. A linear predictor has
the form

y(k) = p(1)x(k-1) + p(2)x(k-2) + ... + p(m-1)x(k-m+1) + p(m)x(k-m)

where x is the original signal, y(k) attempts to predict the value of x(k), and p is an m-
tuple of real numbers. Instead of quantizing x itself, the DPCM encoder quantizes the
predictive error, x-y. The integer m above is called the predictive order. The special case
when m = 1 is called delta modulation.

6-5

6 System Design

Represent Predictors

If the guess for the kth value of the signal x, based on earlier values of x, is

y(k) = p(1)x(k-1) + p(2)x(k-2) +...+ p(m-1)x(k-m+1) + p(m)x(k-m)

then the corresponding predictor vector for toolbox functions is

predictor = [0, p(1), p(2), p(3),..., p(m-1), p(m)]

Note: The initial zero in the predictor vector makes sense if you view the vector as the
polynomial transfer function of a finite impulse response (FIR) filter.

Example: DPCM Encoding and Decoding

A simple special case of DPCM quantizes the difference between the signal's current
value and its value at the previous step. Thus the predictor is just y(k) = x (k - 1).
The code below implements this scheme. It encodes a sawtooth signal, decodes it, and
plots both the original and decoded signals. The solid line is the original signal, while the
dashed line is the recovered signals. The example also computes the mean square error
between the original and decoded signals.

predictor = [0 1]; % y(k)=x(k-1)

partition = [-1:.1:.9];

codebook = [-1:.1:1];

t = [0:pi/50:2*pi];

x = sawtooth(3*t); % Original signal

% Quantize x using DPCM.

encodedx = dpcmenco(x,codebook,partition,predictor);

% Try to recover x from the modulated signal.

decodedx = dpcmdeco(encodedx,codebook,predictor);

plot(t,x,t,decodedx,'--')

legend('Original signal','Decoded signal','Location','NorthOutside');

distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

 0.0327

6-6

 Source Coding

Optimize DPCM Parameters

• “Section Overview” on page 6-7
• “Example: Comparing Optimized and Nonoptimized DPCM Parameters” on page

6-8

Section Overview

The section “Optimize Quantization Parameters” on page 6-4 describes how to use
training data with the lloyds function to help find quantization parameters that will
minimize signal distortion.

This section describes similar procedures for using the dpcmopt function in conjunction
with the two functions dpcmenco and dpcmdeco, which first appear in the previous
section.

Note: The training data you use with dpcmopt should be typical of the kinds of signals
you will actually be quantizing with dpcmenco.

6-7

6 System Design

Example: Comparing Optimized and Nonoptimized DPCM Parameters

This example is similar to the one in the last section. However, where the last example
created predictor, partition, and codebook in a straightforward but haphazard
way, this example uses the same codebook (now called initcodebook) as an initial
guess for a new optimized codebook parameter. This example also uses the predictive
order, 1, as the desired order of the new optimized predictor. The dpcmopt function
creates these optimized parameters, using the sawtooth signal x as training data. The
example goes on to quantize the training data itself; in theory, the optimized parameters
are suitable for quantizing other data that is similar to x. Notice that the mean square
distortion here is much less than the distortion in the previous example.

t = [0:pi/50:2*pi];

x = sawtooth(3*t); % Original signal

initcodebook = [-1:.1:1]; % Initial guess at codebook

% Optimize parameters, using initial codebook and order 1.

[predictor,codebook,partition] = dpcmopt(x,1,initcodebook);

% Quantize x using DPCM.

encodedx = dpcmenco(x,codebook,partition,predictor);

% Try to recover x from the modulated signal.

decodedx = dpcmdeco(encodedx,codebook,predictor);

distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

 0.0063

Compand a Signal

• “Section Overview” on page 6-8
• “Example: µ-Law Compander” on page 6-9

Section Overview

In certain applications, such as speech processing, it is common to use a logarithm
computation, called a compressor, before quantizing. The inverse operation of a
compressor is called an expander. The combination of a compressor and expander is
called a compander.

The compand function supports two kinds of companders: µ-law and A-law companders.
Its reference page lists both compressor laws.

6-8

 Source Coding

Example: µ-Law Compander

The code below quantizes an exponential signal in two ways and compares the resulting
mean square distortions. First, it uses the quantiz function with a partition consisting
of length-one intervals. In the second trial, compand implements a µ-law compressor,
quantiz quantizes the compressed data, and compand expands the quantized data. The
output shows that the distortion is smaller for the second scheme. This is because equal-
length intervals are well suited to the logarithm of sig, but not well suited to sig. The
figure shows how the compander changes sig.

Mu = 255; % Parameter for mu-law compander

sig = -4:.1:4;

sig = exp(sig); % Exponential signal to quantize

V = max(sig);

% 1. Quantize using equal-length intervals and no compander.

[index,quants,distor] = quantiz(sig,0:floor(V),0:ceil(V));

% 2. Use same partition and codebook, but compress

% before quantizing and expand afterwards.

compsig = compand(sig,Mu,V,'mu/compressor');

[index,quants] = quantiz(compsig,0:floor(V),0:ceil(V));

newsig = compand(quants,Mu,max(quants),'mu/expander');

distor2 = sum((newsig-sig).^2)/length(sig);

[distor, distor2] % Display both mean square distortions.

plot(sig); % Plot original signal.

hold on;

plot(compsig,'r--'); % Plot companded signal.

legend('Original','Companded','Location','NorthWest')

The output and figure are below.

ans =

 0.5348 0.0397

6-9

6 System Design

Huffman Coding

• “Section Overview” on page 6-10
• “Create a Huffman Code Dictionary in MATLAB” on page 6-11
• “Create and Decode a Huffman Code Using MATLAB” on page 6-12

Section Overview

Huffman coding offers a way to compress data. The average length of a Huffman code
depends on the statistical frequency with which the source produces each symbol from
its alphabet. A Huffman code dictionary, which associates each data symbol with a
codeword, has the property that no codeword in the dictionary is a prefix of any other
codeword in the dictionary.

The huffmandict, huffmanenco, and huffmandeco functions support Huffman coding
and decoding.

6-10

 Source Coding

Note: For long sequences from sources having skewed distributions and small alphabets,
arithmetic coding compresses better than Huffman coding. To learn how to use
arithmetic coding, see “Arithmetic Coding” on page 6-12.

Create a Huffman Code Dictionary in MATLAB

Huffman coding requires statistical information about the source of the data being
encoded. In particular, the p input argument in the huffmandict function lists the
probability with which the source produces each symbol in its alphabet.

For example, consider a data source that produces 1s with probability 0.1, 2s with
probability 0.1, and 3s with probability 0.8. The main computational step in encoding
data from this source using a Huffman code is to create a dictionary that associates each
data symbol with a codeword. The commands below create such a dictionary and then
show the codeword vector associated with a particular value from the data source.

symbols = [1 2 3]; % Data symbols

p = [0.1 0.1 0.8]; % Probability of each data symbol

dict = huffmandict(symbols,p) % Create the dictionary.

dict{1,:} % Show one row of the dictionary.

The output below shows that the most probable data symbol, 3, is associated with a one-
digit codeword, while less probable data symbols are associated with two-digit codewords.
The output also shows, for example, that a Huffman encoder receiving the data symbol 1
should substitute the sequence 11.

dict =

 [1] [1x2 double]

 [2] [1x2 double]

 [3] [0]

ans =

 1

ans =

 1 1

6-11

6 System Design

Create and Decode a Huffman Code Using MATLAB

The example below performs Huffman encoding and decoding, using a source whose
alphabet has three symbols. Notice that the huffmanenco and huffmandeco functions
use the dictionary that huffmandict created.

sig = repmat([3 3 1 3 3 3 3 3 2 3],1,50); % Data to encode

symbols = [1 2 3]; % Distinct data symbols appearing in sig

p = [0.1 0.1 0.8]; % Probability of each data symbol

dict = huffmandict(symbols,p); % Create the dictionary.

hcode = huffmanenco(sig,dict); % Encode the data.

dhsig = huffmandeco(hcode,dict); % Decode the code.

Arithmetic Coding

• “Section Overview” on page 6-12
• “Represent Arithmetic Coding Parameters” on page 6-12
• “Create and Decode an Arithmetic Code Using MATLAB” on page 6-13

Section Overview

Arithmetic coding offers a way to compress data and can be useful for data sources
having a small alphabet. The length of an arithmetic code, instead of being fixed relative
to the number of symbols being encoded, depends on the statistical frequency with which
the source produces each symbol from its alphabet. For long sequences from sources
having skewed distributions and small alphabets, arithmetic coding compresses better
than Huffman coding.

The arithenco and arithdeco functions support arithmetic coding and decoding.

Represent Arithmetic Coding Parameters

Arithmetic coding requires statistical information about the source of the data being
encoded. In particular, the counts input argument in the arithenco and arithdeco
functions lists the frequency with which the source produces each symbol in its alphabet.
You can determine the frequencies by studying a set of test data from the source. The set
of test data can have any size you choose, as long as each symbol in the alphabet has a
nonzero frequency.

For example, before encoding data from a source that produces 10 x's, 10 y's, and 80 z's in
a typical 100-symbol set of test data, define

6-12

 Source Coding

counts = [10 10 80];

Alternatively, if a larger set of test data from the source contains 22 x's, 23 y's, and 185
z's, then define

counts = [22 23 185];

Create and Decode an Arithmetic Code Using MATLAB

The example below performs arithmetic encoding and decoding, using a source whose
alphabet has three symbols.

seq = repmat([3 3 1 3 3 3 3 3 2 3],1,50);

counts = [10 10 80];

code = arithenco(seq,counts);

dseq = arithdeco(code,counts,length(seq));

Quantize a Signal

• “Scalar Quantization Example 1” on page 6-13
• “Scalar Quantization Example 2” on page 6-14

Scalar Quantization Example 1

The code below shows how the quantiz function uses partition and codebook to map
a real vector, samp, to a new vector, quantized, whose entries are either -1, 0.5, 2, or 3.

partition = [0,1,3];

codebook = [-1, 0.5, 2, 3];

samp = [-2.4, -1, -.2, 0, .2, 1, 1.2, 1.9, 2, 2.9, 3, 3.5, 5];

[index,quantized] = quantiz(samp,partition,codebook);

quantized

The output is below.

quantized =

 Columns 1 through 6

 -1.0000 -1.0000 -1.0000 -1.0000 0.5000 0.5000

 Columns 7 through 12

 2.0000 2.0000 2.0000 2.0000 2.0000 3.0000

6-13

6 System Design

 Column 13

 3.0000

Scalar Quantization Example 2

This example illustrates the nature of scalar quantization more clearly. After quantizing
a sampled sine wave, it plots the original and quantized signals. The plot contrasts the
x's that make up the sine curve with the dots that make up the quantized signal. The
vertical coordinate of each dot is a value in the vector codebook.

t = [0:.1:2*pi]; % Times at which to sample the sine function

sig = sin(t); % Original signal, a sine wave

partition = [-1:.2:1]; % Length 11, to represent 12 intervals

codebook = [-1.2:.2:1]; % Length 12, one entry for each interval

[index,quants] = quantiz(sig,partition,codebook); % Quantize.

plot(t,sig,'x',t,quants,'.')

legend('Original signal','Quantized signal');

axis([-.2 7 -1.2 1.2])

6-14

 Error Detection and Correction

Error Detection and Correction

In this section...

“Cyclic Redundancy Check Codes” on page 6-15
“Block Codes” on page 6-19
“Convolutional Codes” on page 6-37
“Linear Block Codes” on page 6-69
“Hamming Codes” on page 6-79
“BCH Codes” on page 6-88
“Reed-Solomon Codes” on page 6-95
“LDPC Codes” on page 6-106
“Galois Field Computations” on page 6-106
“Galois Fields of Odd Characteristic” on page 6-137

Cyclic Redundancy Check Codes

• “CRC-Code Features” on page 6-15
• “CRC Non-Direct Algorithm” on page 6-16
• “Example Using CRC Non-Direct Algorithm” on page 6-18
• “CRC Direct Algorithm” on page 6-18
• “Selected Bibliography for CRC Coding” on page 6-19

CRC-Code Features

Cyclic redundancy check (CRC) coding is an error-control coding technique for detecting
errors that occur when a message is transmitted. Unlike block or convolutional
codes, CRC codes do not have a built-in error-correction capability. Instead, when
a communications system detects an error in a received message word, the receiver
requests the sender to retransmit the message word.

In CRC coding, the transmitter applies a rule to each message word to create extra bits,
called the checksum, or syndrome, and then appends the checksum to the message word.
After receiving a transmitted word, the receiver applies the same rule to the received
word. If the resulting checksum is nonzero, an error has occurred, and the transmitter
should resend the message word.

6-15

6 System Design

Open the Error Detection and Correction library by double-clicking its icon in the main
Communications System Toolbox block library. Open the CRC sublibrary by double-
clicking on its icon in the Error Detection and Correction library.

Communications System Toolbox supports CRC Coding using Simulink blocks, System
objects, or MATLAB objects.
Blocks

The CRC block library contains four blocks that implement the CRC algorithm:

• General CRC Generator
• General CRC Syndrome Detector
• CRC-N Generator
• CRC-N Syndrome Detector

The General CRC Generator block computes a checksum for each input frame,
appends it to the message word, and transmits the result. The General CRC Syndrome
Detector block receives a transmitted word and calculates its checksum. The block
has two outputs. The first is the message word without the transmitted checksum. The
second output is a binary error flag, which is 0 if the checksum computed for the received
word is zero, and 1 otherwise.

The CRC-N Generator block and CRC-N Syndrome Detector block are special cases
of the General CRC Generator block and General CRC Syndrome Detector block, which
use a predefined CRC-N polynomial, where N is the number of bits in the checksum.

See the General CRC Generator block Reference page for an example of Cyclic
Redundancy Check Encoding.
System objects

The following System objects implement the CRC algorithm:

• comm.CRCDetector
• comm.CRCGenerator

These reference pages contain examples demonstrating the use of the object.

CRC Non-Direct Algorithm

The CRC non-direct algorithm accepts a binary data vector, corresponding to a
polynomial M, and appends a checksum of r bits, corresponding to a polynomial C. The

6-16

 Error Detection and Correction

concatenation of the input vector and the checksum then corresponds to the polynomial
T = M*xr + C, since multiplying by xr corresponds to shifting the input vector r bits to
the left. The algorithm chooses the checksum C so that T is divisible by a predefined
polynomial P of degree r, called the generator polynomial.

The algorithm divides T by P, and sets the checksum equal to the binary vector
corresponding to the remainder. That is, if T = Q*P + R, where R is a polynomial of
degree less than r, the checksum is the binary vector corresponding to R. If necessary,
the algorithm prepends zeros to the checksum so that it has length r.

The CRC generation feature, which implements the transmission phase of the CRC
algorithm, does the following:

1 Left shifts the input data vector by r bits and divides the corresponding polynomial
by P.

2 Sets the checksum equal to the binary vector of length r, corresponding to the
remainder from step 1.

3 Appends the checksum to the input data vector. The result is the output vector.

The CRC detection feature computes the checksum for its entire input vector, as
described above.

The CRC algorithm uses binary vectors to represent binary polynomials, in descending
order of powers. For example, the vector [1 1 0 1] represents the polynomial x3 + x2 +
1.

Note The implementation described in this section is one of many valid implementations
of the CRC algorithm. Different implementations can yield different numerical results.

6-17

6 System Design

Bits enter the linear feedback shift register (LFSR) from the lowest index bit to the
highest index bit. The sequence of input message bits represents the coefficients of a
message polynomial in order of decreasing powers. The message vector is augmented
with r zeros to flush out the LFSR, where r is the degree of the generator polynomial. If
the output from the leftmost register stage d(1) is a 1, then the bits in the shift register
are XORed with the coefficients of the generator polynomial. When the augmented
message sequence is completely sent through the LFSR, the register contains the
checksum [d(1) d(2) . . . d(r)]. This is an implementation of binary long division, in which
the message sequence is the divisor (numerator) and the polynomial is the dividend
(denominator). The CRC checksum is the remainder of the division operation.

Example Using CRC Non-Direct Algorithm

Suppose the input frame is [1 1 0 0 1 1 0]', corresponding to the polynomial M
= x6 +x 5 + x2 + x, and the generator polynomial is P = x3 + x2 + 1, of degree r = 3. By
polynomial division, M*x3 = (x6 + x3 + x)*P + x. The remainder is R = x, so that the
checksum is then [0 1 0]'. An extra 0 is added on the left to make the checksum have
length 3.

CRC Direct Algorithm

X Y

X Y

X

Y

-g
0

g
1

g
r-1

Message Block Input

Code Word Output

+++ . . .

. . .

where

6-18

 Error Detection and Correction

Message Block Input is m m mk0 1 1, ,...,
-

Code Word Output is
c c c m m m d d dn k

X

n k

Y

0 1 1 0 1 1 0 1 1, ,..., , ,..., , , ,...,
- - - -

=

1 2444 3444 1 22444 3444

The initial step of the direct CRC encoding occurs with the three switches in position X.
The algorithm feeds k message bits to the encoder. These bits are the first k bits of the
code word output. Simultaneously, the algorithm sends k bits to the linear feedback shift
register (LFSR). When the system completely feeds the kth message bit to the LFSR,
the switches move to position Y. Here, the LFSR contains the mathematical remainder
from the polynomial division. These bits are shifted out of the LFSR and they are the
remaining bits (checksum) of the code word output.

Selected Bibliography for CRC Coding

[1] Sklar, Bernard., Digital Communications: Fundamentals and Applications,
Englewood Cliffs, NJ, Prentice Hall, 1988.

[2] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, NJ, Prentice Hall, 1995.

Block Codes

• “Block-Coding Features” on page 6-20
• “Terminology” on page 6-21
• “Data Formats for Block Coding” on page 6-21
• “Using Block Encoders and Decoders Within a Model” on page 6-24
• “Examples of Block Coding” on page 6-24
• “Notes on Specific Block-Coding Techniques” on page 6-27
• “Shortening, Puncturing, and Erasures” on page 6-31
• “Reed-Solomon Code in Integer Format” on page 6-34
• “Find a Generator Polynomial” on page 6-34
• “Performing Other Block Code Tasks” on page 6-35
• “Selected Bibliography for Block Coding” on page 6-36

6-19

6 System Design

Block-Coding Features

Error-control coding techniques detect, and possibly correct, errors that occur when
messages are transmitted in a digital communication system. To accomplish this, the
encoder transmits not only the information symbols but also extra redundant symbols.
The decoder interprets what it receives, using the redundant symbols to detect and
possibly correct whatever errors occurred during transmission. You might use error-
control coding if your transmission channel is very noisy or if your data is very sensitive
to noise. Depending on the nature of the data or noise, you might choose a specific type of
error-control coding.

Block coding is a special case of error-control coding. Block-coding techniques map a
fixed number of message symbols to a fixed number of code symbols. A block coder treats
each block of data independently and is a memoryless device. Communications System
Toolbox contains block-coding capabilities by providing Simulink blocks, System objects,
and MATLAB functions.

The class of block-coding techniques includes categories shown in the diagram below.

Linear block codes

Cyclic codes

BCH codes

Hamming Codes Reed-Solomon Codes

Communications System Toolbox supports general linear block codes. It also process
cyclic, BCH, Hamming, and Reed-Solomon codes (which are all special kinds of linear
block codes). Blocks in the product can encode or decode a message using one of the
previously mentioned techniques. The Reed-Solomon and BCH decoders indicate how
many errors they detected while decoding. The Reed-Solomon coding blocks also let you
decide whether to use symbols or bits as your data.

Note The blocks and functions in this product are designed for error-control codes that
use an alphabet having 2 or 2m symbols.

6-20

 Error Detection and Correction

Communications System Toolbox Support Functions

Functions in Communications System Toolbox can support simulation blocks by

• Determining characteristics of a technique, such as error-correction capability or
possible message lengths

• Performing lower-level computations associated with a technique, such as

• Computing a truth table
• Computing a generator or parity-check matrix
• Converting between generator and parity-check matrices
• Computing a generator polynomial

For more information about error-control coding capabilities, see “Block Codes” on page
6-19 in the Communications System Toolbox User's Guide.

Terminology

Throughout this section, the information to be encoded consists of message symbols and
the code that is produced consists of codewords.

Each block of K message symbols is encoded into a codeword that consists of N message
symbols. K is called the message length, N is called the codeword length, and the code is
called an [N,K] code.

Data Formats for Block Coding

Each message or codeword is an ordered grouping of symbols. Each block in the Block
Coding sublibrary processes one word in each time step, as described in the following
section, “Binary Format (All Coding Methods)” on page 6-21. Reed-Solomon coding
blocks also let you choose between binary and integer data, as described in “Integer
Format (Reed-Solomon Only)” on page 6-23.
Binary Format (All Coding Methods)

You can structure messages and codewords as binary vector signals, where each vector
represents a message word or a codeword. At a given time, the encoder receives an
entire message word, encodes it, and outputs the entire codeword. The message and code
signals share the same sample time.

The figure below illustrates this situation. In this example, the encoder receives a four-
bit message and produces a five-bit codeword at time 0. It repeats this process with a new
message at time 1.

6-21

6 System Design

0

1

0

message

0

0

1

1

0

t=0t=1

0

1

0

code

0

0

1

0 1

1

0

t=0t=1

Encoder

For all coding techniques except Reed-Solomon using binary input, the message vector
must have length K and the corresponding code vector has length N. For Reed-Solomon
codes with binary input, the symbols for the code are binary sequences of length M,
corresponding to elements of the Galois field GF(2M). In this case, the message vector
must have length M*K and the corresponding code vector has length M*N. The Binary-
Input RS Encoder block and the Binary-Output RS Decoder block use this format for
messages and codewords.

If the input to a block-coding block is a frame-based vector, it must be a column vector
instead of a row vector.

To produce sample-based messages in the binary format, you can configure the
Bernoulli Binary Generator block so that its Probability of a zero parameter is
a vector whose length is that of the signal you want to create. To produce frame-based
messages in the binary format, you can configure the same block so that its Probability
of a zero parameter is a scalar and its Samples per frame parameter is the length of
the signal you want to create.

Using Serial Signals

If you prefer to structure messages and codewords as scalar signals, where several
samples jointly form a message word or codeword, you can use the Buffer and
Unbuffer blocks in DSP System Toolbox. Be aware that buffering involves latency and
multirate processing. See the reference page for the Buffer block for more details. If
your model computes error rates, the initial delay in the coding-buffering combination
influences the Receive delay parameter in the Error Rate Calculation block. If
you are unsure about the sample times of signals in your model, click the Display menu
and select Sample Time > Colors. Alternatively, attaching Probe blocks (from the
Simulink Signal Attributes library) to connector lines might help.

6-22

 Error Detection and Correction

Integer Format (Reed-Solomon Only)

A message word for an [N,K] Reed-Solomon code consists of M*K bits, which you can
interpret as K symbols between 0 and 2M. The symbols are binary sequences of length
M, corresponding to elements of the Galois field GF(2M), in descending order of powers.
The integer format for Reed-Solomon codes lets you structure messages and codewords
as integer signals instead of binary signals. (The input must be a frame-based column
vector.)

Note In this context, Simulink expects the first bit to be the most significant bit in the
symbol. “First” means the smallest index in a vector or the smallest time for a series of
scalars.

The following figure illustrates the equivalence between binary and integer signals for a
Reed-Solomon encoder. The case for the decoder is similar.

Vector of
3 x 5 bits

3

7

1

0

1

t=0t=0

Integer format
versus

Binary format

1

1

0

1

1

1

0

0

0

0

1

0

0

0

1

Binary Input
RS encoder

Vector of 5
3-bit symbols

RS encoder

6-23

6 System Design

To produce sample-based messages in the integer format, you can configure the Random
Integer Generator block so that M-ary number and Initial seed parameters are vectors
of the desired length and all entries of the M-ary number vector are 2M. To produce
frame-based messages in the integer format, you can configure the same block so that its
M-ary number and Initial seed parameters are scalars and its Samples per frame
parameter is the length of the signal you want to create.

Using Block Encoders and Decoders Within a Model

Once you have configured the coding blocks, a few tips can help you place them correctly
within your model:

• If a block has multiple outputs, the first one is always the stream of coding data.

The Reed-Solomon and BCH blocks have an error counter as a second output.
• Be sure the signal sizes are appropriate for the mask parameters. For example, if you

use the Binary Cyclic Encoder block and set Message length K to 4, the input signal
must be a vector of length 4.

If you are unsure about the size of signals in your model, clicking the Display menu
select Signals and Ports >Signal Dimension.

Examples of Block Coding

Example: Reed-Solomon Code in Integer Format

This example uses a Reed-Solomon code in integer format. It illustrates the appropriate
vector lengths of the code and message signals for the coding blocks. It also exhibits error
correction, using a very simple way of introducing errors into each codeword.

Open the model by typing doc_rscoding at the MATLAB command line. To build the
model, gather and configure these blocks:

6-24

 Error Detection and Correction

• Random Integer Generator, in the Comm Sources library

• Set M-ary number to 15.
• Set Initial seed to a positive number, randseed(0) is chosen here.
• Check the Frame-based outputs check box.
• Set Samples per frame to 5.

• Integer-Input RS Encoder

• Set Codeword length N to 15.
• Set Message length K to 5.

• Gain, in the Simulink Math Operations library

• Set Gain to [0; 0; 0; 0; 0; ones(10,1)].
• Integer-Output RS Decoder

• Set Codeword length N to 15.
• Set Message length K to 5.

• Scope, in the Simulink Sinks library. Get two copies of this block.
• Sum, in the Simulink Math Operations library

• Set List of signs to |-+

Connect the blocks as in the preceding figure. From the model window's Simulation
menu, select Model Configuration Parameters. In the Configuration Parameters
dialog box, set Stop Time to 500.

The vector length numbers appear on the connecting lines only if you click the Display
menu and select Signals & Ports > Signal Dimensions. The encoder accepts a vector
of length 5 (which is K in this case) and produces a vector of length 15 (which is N in this
case). The decoder does the opposite.

Running the model produces the following scope images. Your plot of the error counts
might differ somewhat, depending on your Initial Seed value in the Random Integer
Generator block. (To make the axis range exactly match that of the first scope, right-click
the plot area in the scope and select Axes Properties.)

6-25

6 System Design

6-26

 Error Detection and Correction

Number of Errors Before Correction

The second plot is the number of errors that the decoder detected while trying to recover
the message. Often the number is five because the Gain block replaces the first five
symbols in each codeword with zeros. However, the number of errors is less than five
whenever a correct codeword contains one or more zeros in the first five places.

The first plot is the difference between the original message and the recovered message;
since the decoder was able to correct all errors that occurred, each of the five data
streams in the plot is zero.

Notes on Specific Block-Coding Techniques

Although the Block Coding sublibrary is somewhat uniform in its look and feel, the
various coding techniques are not identical. This section describes special options and
restrictions that apply to parameters and signals for the coding technique categories
in this sublibrary. Read the part that applies to the coding technique you want to use:
generic linear block code, cyclic code, Hamming code, BCH code, or Reed-Solomon code.

6-27

6 System Design

Generic Linear Block Codes

Encoding a message using a generic linear block code requires a generator matrix.
Decoding the code requires the generator matrix and possibly a truth table. In order to
use the Binary Linear Encoder and Binary Linear Decoder blocks, you must
understand the Generator matrix and Error-correction truth table parameters.

Generator Matrix

The process of encoding a message into an [N,K] linear block code is determined by a K-
by-N generator matrix G. Specifically, a 1-by-K message vector v is encoded into the 1-
by-N codeword vector vG. If G has the form [Ik, P] or [P, Ik], where P is some K-by-(N-
K) matrix and Ik is the K-by-K identity matrix, G is said to be in standard form. (Some
authors, such as Clark and Cain [2], use the first standard form, while others, such
as Lin and Costello [3], use the second.) The linear block-coding blocks in this product
require the Generator matrix mask parameter to be in standard form.

Decoding Table

A decoding table tells a decoder how to correct errors that might have corrupted the
code during transmission. Hamming codes can correct any single-symbol error in any
codeword. Other codes can correct, or partially correct, errors that corrupt more than one
symbol in a given codeword.

The Binary Linear Decoder block allows you to specify a decoding table in the Error-
correction truth table parameter. Represent a decoding table as a matrix with N
columns and 2N-K rows. Each row gives a correction vector for one received codeword
vector.

If you do not want to specify a decoding table explicitly, set that parameter to 0.
This causes the block to compute a decoding table using the syndtable function in
Communications System Toolbox.

Cyclic Codes

For cyclic codes, the codeword length N must have the form 2M-1, where M is an integer
greater than or equal to 3.

Generator Polynomials

Cyclic codes have special algebraic properties that allow a polynomial to determine the
coding process completely. This so-called generator polynomial is a degree-(N-K) divisor

6-28

 Error Detection and Correction

of the polynomial xN-1. Van Lint [5] explains how a generator polynomial determines a
cyclic code.

The Binary Cyclic Encoder and Binary Cyclic Decoder blocks allow you to
specify a generator polynomial as the second mask parameter, instead of specifying
K there. The blocks represent a generator polynomial using a vector that lists the
polynomial's coefficients in order of ascending powers of the variable. You can find
generator polynomials for cyclic codes using the cyclpoly function in Communications
System Toolbox.

If you do not want to specify a generator polynomial, set the second mask parameter to
the value of K.

Hamming Codes

For Hamming codes, the codeword length N must have the form 2M-1, where M is an
integer greater than or equal to 3. The message length K must equal N-M.

Primitive Polynomials

Hamming codes rely on algebraic fields that have 2M elements (or, more generally,
pM elements for a prime number p). Elements of such fields are named relative to
a distinguished element of the field that is called a primitive element. The minimal
polynomial of a primitive element is called a primitive polynomial. The Hamming
Encoder and Hamming Decoder blocks allow you to specify a primitive polynomial for
the finite field that they use for computations. If you want to specify this polynomial,
do so in the second mask parameter field. The blocks represent a primitive polynomial
using a vector that lists the polynomial's coefficients in order of ascending powers of
the variable. You can find generator polynomials for Galois fields using the gfprimfd
function in Communications System Toolbox.

If you do not want to specify a primitive polynomial, set the second mask parameter to
the value of K.

BCH Codes

BCH codes are cyclic error-correcting codes that are constructed using finite fields. For
these codes, the codeword length N must have the form 2M-1, where M is an integer
between 3 and 9. The message length K is restricted to particular values that depend on
N. To see which values of K are valid for a given N, see the comm.BCHEncoder System
object™ reference page. No known analytic formula describes the relationship among the
codeword length, message length, and error-correction capability for BCH codes.

6-29

6 System Design

Narrow-Sense BCH Codes

The narrow-sense generator polynomial is LCM[m_1(x), m_2(x), ..., m_2t(x)], where:

• LCM represents the least common multiple,
• m_i(x) represents the minimum polynomial corresponding to αi, α is a root of the

default primitive polynomial for the field GF(n+1),
• and t represents the error-correcting capability of the code.

Reed-Solomon Codes

Reed-Solomon codes are useful for correcting errors that occur in bursts. In the simplest
case, the length of codewords in a Reed-Solomon code is of the form N= 2M-1, where
the 2M is the number of symbols for the code. The error-correction capability of a Reed-
Solomon code is floor((N-K)/2), where K is the length of message words. The
difference N-K must be even.

It is sometimes convenient to use a shortened Reed-Solomon code in which N is less
than 2M-1. In this case, the encoder appends 2M-1-N zero symbols to each message word
and codeword. The error-correction capability of a shortened Reed-Solomon code is also
floor((N-K)/2). The Communications System Toolbox Reed-Solomon blocks can
implement shortened Reed-Solomon codes.
Effect of Nonbinary Symbols

One difference between Reed-Solomon codes and the other codes supported in this
product is that Reed-Solomon codes process symbols in GF(2M) instead of GF(2). Each
such symbol is specified by M bits. The nonbinary nature of the Reed-Solomon code
symbols causes the Reed-Solomon blocks to differ from other coding blocks in these ways:

• You can use the integer format, via the Integer-Input RS Encoder and Integer-
Output RS Decoder blocks.

• The binary format expects the vector lengths to be an integer multiple of M*K (not K)
for messages and the same integer M*N (not N) for codewords.

Error Information

The Reed-Solomon decoding blocks (Binary-Output RS Decoder and Integer-
Output RS Decoder) return error-related information during the simulation. The
second output signal indicates the number of errors that the block detected in the input
codeword. A -1 in the second output indicates that the block detected more errors than it
could correct using the coding scheme.

6-30

 Error Detection and Correction

Shortening, Puncturing, and Erasures

Many standards utilize punctured codes, and digital receivers can easily output erasures.
BCH and RS performance improves significantly in fading channels where the receiver
generates erasures.

A punctured codeword has only parity symbols removed, and a shortened codeword has
only information symbols removed. A codeword with erasures can have those erasures in
either information symbols or parity symbols.

Reed Solomon Examples with Shortening, Puncturing, and Erasures

In this section, a representative example of Reed Solomon coding with shortening,
puncturing, and erasures is built with increasing complexity of error correction.

Encoder Example with Shortening and Puncturing.

The following figure shows a representative example of a (7,3) Reed Solomon encoder
with shortening and puncturing.

Data

source

Add

zeros
Encode

Puncture

(1011)
Shorten

2-symbol

shortened

message

I1I2 0I1I2 0I1I2P1P2P3P4

I1I2P1P3P4 I1I2P1P2P3P4

3-symbol

message

RS Encoder with Shortening and Puncturing

(7, 3)

(6, 2)(5, 2)

In this figure, the message source outputs two information symbols, designated by
I1I2. (For a BCH example, the symbols are simply binary bits.) Because the code is a
shortened (7,3) code, a zero must be added ahead of the information symbols, yielding

6-31

6 System Design

a three-symbol message of 0I1I2. The modified message sequence is then RS encoded,
and the added information zero is subsequently removed, which yields a result of
I1I2P1P2P3P4. (In this example, the parity bits are at the end of the codeword.)

The puncturing operation is governed by the puncture vector, which, in this case, is 1011.
Within the puncture vector, a 1 means that the symbol is kept, and a 0 means that the
symbol is thrown away. In this example, the puncturing operation removes the second
parity symbol, yielding a final vector of I1I2P1P3P4.

Decoder Example with Shortening and Puncturing.

The following figure shows how the RS decoder operates on a shortened and punctured
codeword.

Depuncture

(1011)

Add

zeros
Demod

DecodeTruncate

(5, 2)

I1I2P1P3P4 I1I2P1EP3P4

I1I2 DI1I2

(6, 2)

RS Decoder with Shortening and Puncturing

3-symbol

message

0I1I2P1EP3P4

(7, 3)2-symbol

shortened

message

This case corresponds to the encoder operations shown in the figure of the RS encoder
with shortening and puncturing. As shown in the preceding figure, the encoder receives
a (5,2) codeword, because it has been shortened from a (7,3) codeword by one symbol, and
one symbol has also been punctured.

As a first step, the decoder adds an erasure, designated by E, in the second parity
position of the codeword. This corresponds to the puncture vector 1011. Adding a zero
accounts for shortening, in the same way as shown in the preceding figure. The single
erasure does not exceed the erasure-correcting capability of the code, which can correct

6-32

 Error Detection and Correction

four erasures. The decoding operation results in the three-symbol message DI1I2. The
first symbol is truncated, as in the preceding figure, yielding a final output of I1I2.

Decoder Example with Shortening, Puncturing, and Erasures.

The following figure shows the decoder operating on the punctured, shortened codeword,
while also correcting erasures generated by the receiver.

Depuncture

(1011)

Add

zeros
Erase

DecodeTruncate

I1EP1P3E I1EP1EP3E

0I1EP1EP3EI1I2 DI1I2

(6, 2)

RS Decoder with Shortening, Puncturing, and Erasures

(7, 3)3-symbol

message

2-symbol

shortened

message

I1I2P1P3P4

(5, 2)

01001

In this figure, demodulator receives the I1I2P1P3P4 vector that the encoder sent. The
demodulator declares that two of the five received symbols are unreliable enough to be
erased, such that symbols 2 and 5 are deemed to be erasures. The 01001 vector, provided
by an external source, indicates these erasures. Within the erasures vector, a 1 means
that the symbol is to be replaced with an erasure symbol, and a 0 means that the symbol
is passed unaltered.

The decoder blocks receive the codeword and the erasure vector, and perform the
erasures indicated by the vector 01001. Within the erasures vector, a 1 means that the
symbol is to be replaced with an erasure symbol, and a 0 means that the symbol is passed
unaltered. The resulting codeword vector is I1EP1P3E, where E is an erasure symbol.

The codeword is then depunctured, according to the puncture vector used in the encoding
operation (i.e., 1011). Thus, an erasure symbol is inserted between P1 and P3, yielding a
codeword vector of I1EP1EP3E.

6-33

6 System Design

Just prior to decoding, the addition of zeros at the beginning of the information vector
accounts for the shortening. The resulting vector is 0I1EP1EP3E, such that a (7,3)
codeword is sent to the Berlekamp algorithm.

This codeword is decoded, yielding a three-symbol message of DI1I2 (where D refers to a
dummy symbol). Finally, the removal of the D symbol from the message vector accounts
for the shortening and yields the original I1I2 vector.

For additional information, see the “Reed-Solomon Coding with Erasures, Punctures, and
Shortening” on page 9-20 example.

Reed-Solomon Code in Integer Format

To open an example model that uses a Reed-Solomon code in integer format, type
doc_rscoding at the MATLAB command line. For more information about the model,
see “Example: Reed-Solomon Code in Integer Format” on page 6-24

Find a Generator Polynomial

To find a generator polynomial for a cyclic, BCH, or Reed-Solomon code, use the
cyclpoly, bchgenpoly, or rsgenpoly function, respectively. The commands

genpolyCyclic = cyclpoly(15,5) % 1+X^5+X^10

genpolyBCH = bchgenpoly(15,5) % x^10+x^8+x^5+x^4+x^2+x+1

genpolyRS = rsgenpoly(15,5)

find generator polynomials for block codes of different types. The output is below.
genpolyCyclic =

 1 0 0 0 0 1 0 0 0 0 1

genpolyBCH = GF(2) array.

Array elements =

 1 0 1 0 0 1 1 0 1 1 1

genpolyRS = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 1 4 8 10 12 9 4 2 12 2 7

The formats of these outputs vary:

6-34

 Error Detection and Correction

• cyclpoly represents a generator polynomial using an integer row vector that lists
the polynomial's coefficients in order of ascending powers of the variable.

• bchgenpoly and rsgenpoly represent a generator polynomial using a Galois row
vector that lists the polynomial's coefficients in order of descending powers of the
variable.

• rsgenpoly uses coefficients in a Galois field other than the binary field GF(2). For
more information on the meaning of these coefficients, see “How Integers Correspond
to Galois Field Elements” on page 6-111 and “Polynomials over Galois Fields” on
page 6-130.

Nonuniqueness of Generator Polynomials

Some pairs of message length and codeword length do not uniquely determine the
generator polynomial. The syntaxes for functions in the example above also include
options for retrieving generator polynomials that satisfy certain constraints that you
specify. See the functions' reference pages for details about syntax options.

Algebraic Expression for Generator Polynomials

The generator polynomials produced by bchgenpoly and rsgenpoly have the form
(X - Ab)(X - Ab+1)...(X - Ab+2t-1), where A is a primitive element for an appropriate Galois
field, and b and t are integers. See the functions' reference pages for more information
about this expression.

Performing Other Block Code Tasks

This section describes functions that compute typical parameters associated with linear
block codes, as well as functions that convert information from one format to another.
The topics are

• “Error Correction Versus Error Detection for Linear Block Codes” on page 6-35
• “Finding the Error-Correction Capability” on page 6-36
• “Finding Generator and Parity-Check Matrices” on page 6-36
• “Converting Between Parity-Check and Generator Matrices” on page 6-36

Error Correction Versus Error Detection for Linear Block Codes

You can use a liner block code to detect dmin -1 errors or to correct t = 1

2
1()mind -

È

Î
Í

˘

˚
˙

errors.

6-35

6 System Design

If you compromise the error correction capability of a code, you can detect more than t
errors. For example, a code with dmin = 7 can correct t = 3 errors or it can detect up to 4
errors and correct up to 2 errors.
Finding the Error-Correction Capability

The bchgenpoly and rsgenpoly functions can return an optional second output
argument that indicates the error-correction capability of a BCH or Reed-Solomon code.
For example, the commands

[g,t] = bchgenpoly(31,16);

t

t =

 3

find that a [31, 16] BCH code can correct up to three errors in each codeword.
Finding Generator and Parity-Check Matrices

To find a parity-check and generator matrix for a Hamming code with codeword length
2^m-1, use the hammgen function as below. m must be at least three.

[parmat,genmat] = hammgen(m); % Hamming

To find a parity-check and generator matrix for a cyclic code, use the cyclgen function.
You must provide the codeword length and a valid generator polynomial. You can use the
cyclpoly function to produce one possible generator polynomial after you provide the
codeword length and message length. For example,

[parmat,genmat] = cyclgen(7,cyclpoly(7,4)); % Cyclic

Converting Between Parity-Check and Generator Matrices

The gen2par function converts a generator matrix into a parity-check matrix, and vice
versa. The reference page for gen2par contains examples to illustrate this.

Selected Bibliography for Block Coding

[1] Berlekamp, Elwyn R., Algebraic Coding Theory, New York, McGraw-Hill, 1968.

[2] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

6-36

 Error Detection and Correction

[4] Peterson, W. Wesley, and E. J. Weldon, Jr., Error-Correcting Codes, 2nd ed.,
Cambridge, MA, MIT Press, 1972.

[5] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag, 1982.

[6] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, NJ, Prentice Hall, 1995.

[7] Gallager, Robert G., Low-Density Parity-Check Codes, Cambridge, MA, MIT Press,
1963.

[8] Ryan, William E., “An introduction to LDPC codes,” Coding and Signal Processing for
Magnetic Recoding Systems (Vasic, B., ed.), CRC Press, 2004.

Convolutional Codes

• “Convolutional Code Features” on page 6-37
• “Polynomial Description of a Convolutional Code” on page 6-39
• “Trellis Description of a Convolutional Code” on page 6-41
• “Create and Decode Convolutional Codes” on page 6-45
• “Design a Rate-2/3 Feedforward Encoder Using MATLAB” on page 6-54
• “Design a Rate 2/3 Feedforward Encoder Using Simulink” on page 6-55
• “Puncture a Convolutional Code Using MATLAB” on page 6-58
• “Implement a Systematic Encoder with Feedback Using Simulink” on page 6-59
• “Soft-Decision Decoding” on page 6-61
• “Tailbiting Encoding Using Feedback Encoders” on page 6-68
• “Selected Bibliography for Convolutional Coding” on page 6-69

Convolutional Code Features

Convolutional coding is a special case of error-control coding. Unlike a block coder,
a convolutional coder is not a memoryless device. Even though a convolutional coder
accepts a fixed number of message symbols and produces a fixed number of code symbols,
its computations depend not only on the current set of input symbols but on some of the
previous input symbols.

Communications System Toolbox provides convolutional coding capabilities as Simulink
blocks, System objects, and MATLAB functions. This product supports feedforward
and feedback convolutional codes that can be described by a trellis structure or a set of

6-37

6 System Design

generator polynomials. It uses the Viterbi algorithm to implement hard-decision and soft-
decision decoding.

The product also includes an a posteriori probability decoder, which can be used for soft
output decoding of convolutional codes.

For background information about convolutional coding, see the works listed in “Selected
Bibliography for Convolutional Coding” on page 6-69.

Block Parameters for Convolutional Coding

To process convolutional codes, use the Convolutional Encoder, Viterbi Decoder,
and/or APP Decoder blocks in the Convolutional sublibrary. If a mask parameter is
required in both the encoder and the decoder, use the same value in both blocks.

The blocks in the Convolutional sublibrary assume that you use one of two different
representations of a convolutional encoder:

• If you design your encoder using a diagram with shift registers and modulo-2 adders,
you can compute the code generator polynomial matrix and subsequently use the
poly2trellis function (in Communications System Toolbox) to generate the
corresponding trellis structure mask parameter automatically. For an example, see
“Design a Rate 2/3 Feedforward Encoder Using Simulink” on page 6-55.

• If you design your encoder using a trellis diagram, you can construct the trellis
structure in MATLAB and use it as the mask parameter.

Details about these representations are in the sections “Polynomial Description of a
Convolutional Code” on page 6-39 and “Trellis Description of a Convolutional Code”
on page 6-41 in the Communications System Toolbox User's Guide.

Using the Polynomial Description in Blocks

To use the polynomial description with the Convolutional Encoder, Viterbi
Decoder, or APP Decoder blocks, use the utility function poly2trellis from
Communications System Toolbox. This function accepts a polynomial description and
converts it into a trellis description. For example, the following command computes
the trellis description of an encoder whose constraint length is 5 and whose generator
polynomials are 35 and 31:

trellis = poly2trellis(5,[35 31]);

To use this encoder with one of the convolutional-coding blocks, simply place a
poly2trellis command such as

6-38

 Error Detection and Correction

poly2trellis(5,[35 31]);

in the Trellis structure parameter field.

Polynomial Description of a Convolutional Code

A polynomial description of a convolutional encoder describes the connections among
shift registers and modulo 2 adders. For example, the figure below depicts a feedforward
convolutional encoder that has one input, two outputs, and two shift registers.

Input

First output

Second output

z
-1

z
-1

+

+

A polynomial description of a convolutional encoder has either two or three components,
depending on whether the encoder is a feedforward or feedback type:

• Constraint lengths
• Generator polynomials
• Feedback connection polynomials (for feedback encoders only)

Constraint Lengths

The constraint lengths of the encoder form a vector whose length is the number of inputs
in the encoder diagram. The elements of this vector indicate the number of bits stored in
each shift register, including the current input bits.

In the figure above, the constraint length is three. It is a scalar because the encoder has
one input stream, and its value is one plus the number of shift registers for that input.

Generator Polynomials

If the encoder diagram has k inputs and n outputs, the code generator matrix is a k-
by-n matrix. The element in the ith row and jth column indicates how the ith input
contributes to the jth output.

6-39

6 System Design

For systematic bits of a systematic feedback encoder, match the entry in the code
generator matrix with the corresponding element of the feedback connection vector. See
“Feedback Connection Polynomials” on page 6-40 below for details.

In other situations, you can determine the (i,j) entry in the matrix as follows:

1 Build a binary number representation by placing a 1 in each spot where a connection
line from the shift register feeds into the adder, and a 0 elsewhere. The leftmost
spot in the binary number represents the current input, while the rightmost spot
represents the oldest input that still remains in the shift register.

2 Convert this binary representation into an octal representation by considering
consecutive triplets of bits, starting from the rightmost bit. The rightmost bit in each
triplet is the least significant. If the number of bits is not a multiple of three, place
zero bits at the left end as necessary. (For example, interpret 1101010 as 001 101
010 and convert it to 152.)

For example, the binary numbers corresponding to the upper and lower adders in the
figure above are 110 and 111, respectively. These binary numbers are equivalent to the
octal numbers 6 and 7, respectively, so the generator polynomial matrix is [6 7].

Note: You can perform the binary-to-octal conversion in MATLAB by using code like
str2num(dec2base(bin2dec('110'),8)).

For a table of some good convolutional code generators, refer to [2] in the section
“Selected Bibliography for Block Coding” on page 6-36, especially that book's
appendices.

Feedback Connection Polynomials

If you are representing a feedback encoder, you need a vector of feedback connection
polynomials. The length of this vector is the number of inputs in the encoder diagram.
The elements of this vector indicate the feedback connection for each input, using an
octal format. First build a binary number representation as in step 1 above. Then convert
the binary representation into an octal representation as in step 2 above.

If the encoder has a feedback configuration and is also systematic, the code generator and
feedback connection parameters corresponding to the systematic bits must have the same
values.

For example, the diagram below shows a rate 1/2 systematic encoder with feedback.

6-40

 Error Detection and Correction

z-1 z-1z-1 z-1

Second output

First output (systematic)

Input

1 1 111

1 1 0 1 1

+

+

This encoder has a constraint length of 5, a generator polynomial matrix of [37 33], and a
feedback connection polynomial of 37.

The first generator polynomial matches the feedback connection polynomial because the
first output corresponds to the systematic bits. The feedback polynomial is represented
by the binary vector [1 1 1 1 1], corresponding to the upper row of binary digits in the
diagram. These digits indicate connections from the outputs of the registers to the adder.
The initial 1 corresponds to the input bit. The octal representation of the binary number
11111 is 37.

The second generator polynomial is represented by the binary vector [1 1 0 1 1],
corresponding to the lower row of binary digits in the diagram. The octal number
corresponding to the binary number 11011 is 33.

Using the Polynomial Description in MATLAB

To use the polynomial description with the functions convenc and vitdec, first convert
it into a trellis description using the poly2trellis function. For example, the command
below computes the trellis description of the encoder pictured in the section “Polynomial
Description of a Convolutional Code” on page 6-39.

trellis = poly2trellis(3,[6 7]);

The MATLAB structure trellis is a suitable input argument for convenc and vitdec.

Trellis Description of a Convolutional Code

A trellis description of a convolutional encoder shows how each possible input to the
encoder influences both the output and the state transitions of the encoder. This section

6-41

6 System Design

describes trellises, and how to represent trellises in MATLAB, and gives an example of a
MATLAB trellis.

The figure below depicts a trellis for the convolutional encoder from the previous section.
The encoder has four states (numbered in binary from 00 to 11), a one-bit input, and
a two-bit output. (The ratio of input bits to output bits makes this encoder a rate-1/2
encoder.) Each solid arrow shows how the encoder changes its state if the current input is
zero, and each dashed arrow shows how the encoder changes its state if the current input
is one. The octal numbers above each arrow indicate the current output of the encoder.

State

State transition when input is 0

State transition when input is 1

State

00

01

10

11

00

01

10

11

0

3

1

2

3

0

2

1

As an example of interpreting this trellis diagram, if the encoder is in the 10 state and
receives an input of zero, it outputs the code symbol 3 and changes to the 01 state. If it is
in the 10 state and receives an input of one, it outputs the code symbol 0 and changes to
the 11 state.

Note that any polynomial description of a convolutional encoder is equivalent to
some trellis description, although some trellises have no corresponding polynomial
descriptions.

Specifying a Trellis in MATLAB

To specify a trellis in MATLAB, use a specific form of a MATLAB structure called a
trellis structure. A trellis structure must have five fields, as in the table below.

Fields of a Trellis Structure for a Rate k/n Code

6-42

 Error Detection and Correction

Field in Trellis Structure Dimensions Meaning

numInputSymbols Scalar Number of input symbols to
the encoder: 2k

numOutputsymbols Scalar Number of output symbols
from the encoder: 2n

numStates Scalar Number of states in the
encoder

nextStates numStates-by-2k matrix Next states for all
combinations of current state
and current input

outputs numStates-by-2k matrix Outputs (in octal) for all
combinations of current state
and current input

Note: While your trellis structure can have any name, its fields must have the exact
names as in the table. Field names are case sensitive.

In the nextStates matrix, each entry is an integer between 0 and numStates-1. The
element in the ith row and jth column denotes the next state when the starting state
is i-1 and the input bits have decimal representation j-1. To convert the input bits to a
decimal value, use the first input bit as the most significant bit (MSB). For example, the
second column of the nextStates matrix stores the next states when the current set of
input values is {0,...,0,1}. To learn how to assign numbers to states, see the reference page
for istrellis.

In the outputs matrix, the element in the ith row and jth column denotes the encoder's
output when the starting state is i-1 and the input bits have decimal representation j-1.
To convert to decimal value, use the first output bit as the MSB.

How to Create a MATLAB Trellis Structure

Once you know what information you want to put into each field, you can create a trellis
structure in any of these ways:

• Define each of the five fields individually, using structurename.fieldname
notation. For example, set the first field of a structure called s using the command
below. Use additional commands to define the other fields.

6-43

6 System Design

s.numInputSymbols = 2;

The reference page for the istrellis function illustrates this approach.
• Collect all field names and their values in a single struct command. For example:

s = struct('numInputSymbols',2,'numOutputSymbols',2,...

 'numStates',2,'nextStates',[0 1;0 1],'outputs',[0 0;1 1]);

• Start with a polynomial description of the encoder and use the poly2trellis
function to convert it to a valid trellis structure. The polynomial description of a
convolutional encoder is described in “Polynomial Description of a Convolutional
Code” on page 6-39.

To check whether your structure is a valid trellis structure, use the istrellis function.
Example: A MATLAB Trellis Structure

Consider the trellis shown below.

State

State transition when input is 0

State transition when input is 1

State

00

01

10

11

00

01

10

11

0

3

1

2

3

0

2

1

To build a trellis structure that describes it, use the command below.

trellis = struct('numInputSymbols',2,'numOutputSymbols',4,...

'numStates',4,'nextStates',[0 2;0 2;1 3;1 3],...

'outputs',[0 3;1 2;3 0;2 1]);

The number of input symbols is 2 because the trellis diagram has two types of input
path: the solid arrow and the dashed arrow. The number of output symbols is 4 because
the numbers above the arrows can be either 0, 1, 2, or 3. The number of states is 4

6-44

 Error Detection and Correction

because there are four bullets on the left side of the trellis diagram (equivalently,
four on the right side). To compute the matrix of next states, create a matrix whose
rows correspond to the four current states on the left side of the trellis, whose columns
correspond to the inputs of 0 and 1, and whose elements give the next states at the end
of the arrows on the right side of the trellis. To compute the matrix of outputs, create a
matrix whose rows and columns are as in the next states matrix, but whose elements
give the octal outputs shown above the arrows in the trellis.

Create and Decode Convolutional Codes

The functions for encoding and decoding convolutional codes are convenc and vitdec.
This section discusses using these functions to create and decode convolutional codes.
Encoding

A simple way to use convenc to create a convolutional code is shown in the commands
below.

Define a trellis.

t = poly2trellis([4 3],[4 5 17;7 4 2]);

Encode a vector of ones.

x = ones(100,1);

code = convenc(x,t);

The first command converts a polynomial description of a feedforward convolutional
encoder to the corresponding trellis description. The second command encodes 100 bits,
or 50 two-bit symbols. Because the code rate in this example is 2/3, the output vector
code contains 150 bits (that is, 100 input bits times 3/2).

To check whether your trellis corresponds to a catastrophic convolutional code, use the
iscatastrophic function.
Hard-Decision Decoding

To decode using hard decisions, use the vitdec function with the flag 'hard' and with
binary input data. Because the output of convenc is binary, hard-decision decoding can
use the output of convenc directly, without additional processing. This example extends
the previous example and implements hard-decision decoding.

Define a trellis.

t = poly2trellis([4 3],[4 5 17;7 4 2]);

6-45

6 System Design

Encode a vector of ones.

code = convenc(ones(100,1),t);

Set the traceback length for decoding and decode using vitdec.

tb = 2;

decoded = vitdec(code,t,tb,'trunc','hard');

Verify that the decoded data is a vector of 100 ones.

isequal(decoded,ones(100,1))

ans =

 logical

 1

Soft-Decision Decoding

To decode using soft decisions, use the vitdec function with the flag 'soft'. Specify the
number, nsdec, of soft-decision bits and use input data consisting of integers between 0
and 2^nsdec-1.

An input of 0 represents the most confident 0, while an input of 2^nsdec-1 represents
the most confident 1. Other values represent less confident decisions. For example, the
table below lists interpretations of values for 3-bit soft decisions.

Input Values for 3-bit Soft Decisions

Input Value Interpretation

0 Most confident 0
1 Second most confident 0
2 Third most confident 0
3 Least confident 0
4 Least confident 1
5 Third most confident 1
6 Second most confident 1

6-46

 Error Detection and Correction

Input Value Interpretation

7 Most confident 1

Implement Soft-Decision Decoding Using MATLAB

The script below illustrates decoding with 3-bit soft decisions. First it creates a
convolutional code with convenc and adds white Gaussian noise to the code with awgn.
Then, to prepare for soft-decision decoding, the example uses quantiz to map the noisy
data values to appropriate decision-value integers between 0 and 7. The second argument
in quantiz is a partition vector that determines which data values map to 0, 1, 2, etc.
The partition is chosen so that values near 0 map to 0, and values near 1 map to 7.
(You can refine the partition to obtain better decoding performance if your application
requires it.) Finally, the example decodes the code and computes the bit error rate.
When comparing the decoded data with the original message, the example must take the
decoding delay into account. The continuous operation mode of vitdec causes a delay
equal to the traceback length, so msg(1) corresponds to decoded(tblen+1) rather than
to decoded(1).

s = RandStream.create('mt19937ar', 'seed',94384);

prevStream = RandStream.setGlobalStream(s);

msg = randi([0 1],4000,1); % Random data

t = poly2trellis(7,[171 133]); % Define trellis.

% Create a ConvolutionalEncoder System object

hConvEnc = comm.ConvolutionalEncoder(t);

% Create an AWGNChannel System object.

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...

 'SNR', 6);

% Create a ViterbiDecoder System object

hVitDec = comm.ViterbiDecoder(t, 'InputFormat', 'Soft', ...

 'SoftInputWordLength', 3, 'TracebackDepth', 48, ...

 'TerminationMethod', 'Continuous');

% Create a ErrorRate Calculator System object. Account for the receive

% delay caused by the traceback length of the viterbi decoder.

hErrorCalc = comm.ErrorRate('ReceiveDelay', 48);

ber = zeros(3,1); % Store BER values

code = step(hConvEnc,msg); % Encode the data.

hChan.SignalPower = (code'*code)/length(code);

ncode = step(hChan,code); % Add noise.

% Quantize to prepare for soft-decision decoding.

qcode = quantiz(ncode,[0.001,.1,.3,.5,.7,.9,.999]);

tblen = 48; delay = tblen; % Traceback length

6-47

6 System Design

decoded = step(hVitDec,qcode); % Decode.

% Compute bit error rate.

ber = step(hErrorCalc, msg, decoded);

ratio = ber(1)

number = ber(2)

RandStream.setGlobalStream(prevStream);

The output is below.

number =

 5

ratio =

 0.0013

Implement Soft-Decision Decoding Using Simulink

This example creates a rate 1/2 convolutional code. It uses a quantizer and the
Viterbi Decoder block to perform soft-decision decoding. To open the model, enter
doc_softdecision at the MATLAB command line. For a description of the model, see
Overview of the Simulation on page 6-61.

Defining the Convolutional Code

The feedforward convolutional encoder in this example is depicted below.

Input

First output

1

1

1

1

1

1

0 1

1

0

1

1

00

Second output

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

The encoder's constraint length is a scalar since the encoder has one input. The value
of the constraint length is the number of bits stored in the shift register, including the

6-48

 Error Detection and Correction

current input. There are six memory registers, and the current input is one bit. Thus the
constraint length of the code is 7.

The code generator is a 1-by-2 matrix of octal numbers because the encoder has one input
and two outputs. The first element in the matrix indicates which input values contribute
to the first output, and the second element in the matrix indicates which input values
contribute to the second output.

For example, the first output in the encoder diagram is the modulo-2 sum of the
rightmost and the four leftmost elements in the diagram's array of input values. The
seven-digit binary number 1111001 captures this information, and is equivalent to
the octal number 171. The octal number 171 thus becomes the first entry of the code
generator matrix. Here, each triplet of bits uses the leftmost bit as the most significant
bit. The second output corresponds to the binary number 1011011, which is equivalent to
the octal number 133. The code generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the block
which code to use when processing data. In this case, the poly2trellis function, in
Communications System Toolbox, converts the constraint length and the pair of octal
numbers into a valid trellis structure.

While the message data entering the Convolutional Encoder block is a scalar bit stream,
the encoded data leaving the block is a stream of binary vectors of length 2.

Mapping the Received Data

The received data, that is, the output of the AWGN Channel block, consists of complex
numbers that are close to -1 and 1. In order to reconstruct the original binary message,
the receiver part of the model must decode the convolutional code. The Viterbi
Decoder block in this model expects its input data to be integers between 0 and 7. The
demodulator, a custom subsystem in this model, transforms the received data into a
format that the Viterbi Decoder block can interpret properly. More specifically, the
demodulator subsystem

• Converts the received data signal to a real signal by removing its imaginary part. It
is reasonable to assume that the imaginary part of the received data does not contain
essential information, because the imaginary part of the transmitted data is zero
(ignoring small roundoff errors) and because the channel noise is not very powerful.

• Normalizes the received data by dividing by the standard deviation of the noise
estimate and then multiplying by -1.

• Quantizes the normalized data using three bits.

6-49

6 System Design

The combination of this mapping and the Viterbi Decoder block's decision mapping
reverses the BPSK modulation that the BPSK Modulator Baseband block performs on
the transmitting side of this model. To examine the demodulator subsystem in more
detail, double-click the icon labeled Soft-Output BPSK Demodulator.

Decoding the Convolutional Code

After the received data is properly mapped to length-2 vectors of 3-bit decision values,
the Viterbi Decoder block decodes it. The block uses a soft-decision algorithm with 23

different input values because the Decision type parameter is Soft Decision and the
Number of soft decision bits parameter is 3.

Soft-Decision Interpretation of Data

When the Decision type parameter is set to Soft Decision, the Viterbi Decoder block
requires input values between 0 and 2b-1, where b is the Number of soft decision bits
parameter. The block interprets 0 as the most confident decision that the codeword bit
is a 0 and interprets 2b-1 as the most confident decision that the codeword bit is a 1. The
values in between these extremes represent less confident decisions. The following table
lists the interpretations of the eight possible input values for this example.

Decision Value Interpretation

0 Most confident 0
1 Second most confident 0
2 Third most confident 0
3 Least confident 0
4 Least confident 1
5 Third most confident 1
6 Second most confident 1
7 Most confident 1

Traceback and Decoding Delay

The Traceback depth parameter in the Viterbi Decoder block represents the length of
the decoding delay. Typical values for a traceback depth are about five or six times the
constraint length, which would be 35 or 42 in this example. However, some hardware
implementations offer options of 48 and 96. This example chooses 48 because that is
closer to the targets (35 and 42) than 96 is.

6-50

 Error Detection and Correction

Delay in Received Data

The Error Rate Calculation block's Receive delay parameter is nonzero because a
given message bit and its corresponding recovered bit are separated in time by a nonzero
amount of simulation time. The Receive delay parameter tells the block which elements
of its input signals to compare when checking for errors.

In this case, the Receive delay value is equal to the Traceback depth value (49).
Comparing Simulation Results with Theoretical Results

This section describes how to compare the bit error rate in this simulation with the
bit error rate that would theoretically result from unquantized decoding. The process
includes a few steps, described in these sections:

Computing Theoretical Bounds for the Bit Error Rate

To calculate theoretical bounds for the bit error rate Pb of the convolutional code in this
model, you can use this estimate based on unquantized-decision decoding:

P c Pb d d

d f

<
=

•

Â

In this estimate, cd is the sum of bit errors for error events of distance d, and f is the free
distance of the code. The quantity Pd is the pairwise error probability, given by

P dR
E

N
d

b=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

1

2
0

erfc

where R is the code rate of 1/2, and erfc is the MATLAB complementary error function,
defined by

erfc()x e dt
t

x

= -
•

Ú
2 2

p

Values for the coefficients cd and the free distance f are in published articles such as
Frenger, P., P. Orten, and T. Ottosson, "Convolution Codes with Optimum Distance
Spectrum," IEEE Communications Letters, vol. 3, pp. 317-319, November 1999. [3]. The
free distance for this code is f = 10.

6-51

6 System Design

The following commands calculate the values of Pb for Eb/N0 values in the range from 1
to 4, in increments of 0.5:

EbNoVec = [1:0.5:4.0];

R = 1/2;

% Errs is the vector of sums of bit errors for

% error events at distance d, for d from 10 to 29.

Errs = [36 0 211 0 1404 0 11633 0 77433 0 502690 0,...

 3322763 0 21292910 0 134365911 0 843425871 0];

% P is the matrix of pairwise error probilities, for

% Eb/No values in EbNoVec and d from 10 to 29.

P = zeros(20,7); % Initialize.

for d = 10:29

 P(d-9,:) = (1/2)*erfc(sqrt(d*R*10.^(EbNoVec/10)));

end

% Bounds is the vector of upper bounds for the bit error

% rate, for Eb/No values in EbNoVec.

Bounds = Errs*P;

Simulating Multiple Times to Collect Bit Error Rates

You can efficiently vary the simulation parameters by using the sim function to run the
simulation from the MATLAB command line. For example, the following code calculates
the bit error rate at bit energy-to-noise ratios ranging from 1 dB to 4 dB, in increments of
0.5 dB. It collects all bit error rates from these simulations in the matrix BERVec. It also
plots the bit error rates in a figure window along with the theoretical bounds computed in
the preceding code fragment.

Note First open the model by clicking here in the MATLAB Help browser. Then execute
these commands, which might take a few minutes.

% Plot theoretical bounds and set up figure.

figure;

semilogy(EbNoVec,Bounds,'bo',1,NaN,'r*');

xlabel('Eb/No (dB)'); ylabel('Bit Error Rate');

title('Bit Error Rate (BER)');

legend('Theoretical bound on BER','Actual BER');

axis([1 4 1e-5 1]);

hold on;

BERVec = [];

% Make the noise level variable.

6-52

 Error Detection and Correction

set_param('doc_softdecision/AWGN Channel',...

 'EsNodB','EbNodB+10*log10(1/2)');

% Simulate multiple times.

for n = 1:length(EbNoVec)

 EbNodB = EbNoVec(n);

 sim('doc_softdecision',5000000);

 BERVec(n,:) = BER_Data;

 semilogy(EbNoVec(n),BERVec(n,1),'r*'); % Plot point.

 drawnow;

end

hold off;

Note The estimate for Pb assumes that the decoder uses unquantized data, that is, an
infinitely fine quantization. By contrast, the simulation in this example uses 8-level (3-
bit) quantization. Because of this quantization, the simulated bit error rate is not quite
as low as the bound when the signal-to-noise ratio is high.

The plot of bit error rate against signal-to-noise ratio follows. The locations of your actual
BER points might vary because the simulation involves random numbers.

6-53

6 System Design

Design a Rate-2/3 Feedforward Encoder Using MATLAB

The example below uses the rate 2/3 feedforward encoder depicted in this schematic. The
accompanying description explains how to determine the trellis structure parameter from
a schematic of the encoder and then how to perform coding using this encoder.

+

+

+

z-1 z-1 z-1 z-1

z-1 z-1 z-1

Second output

Third output

First output

First input

Second input

1 0 0 1 1

1 1 1 0 1

0 1 0 1

1 0 1 1

Determining Coding Parameters

The convenc and vitdec functions can implement this code if their parameters have
the appropriate values.

The encoder's constraint length is a vector of length 2 because the encoder has two
inputs. The elements of this vector indicate the number of bits stored in each shift
register, including the current input bits. Counting memory spaces in each shift register
in the diagram and adding one for the current inputs leads to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal numbers, use the
element in the ith row and jth column to indicate how the ith input contributes to the
jth output. For example, to compute the element in the second row and third column,
the leftmost and two rightmost elements in the second shift register of the diagram feed
into the sum that forms the third output. Capture this information as the binary number

6-54

 Error Detection and Correction

1011, which is equivalent to the octal number 13. The full value of the code generator
matrix is [23 35 0; 0 5 13].

To use the constraint length and code generator parameters in the convenc and vitdec
functions, use the poly2trellis function to convert those parameters into a trellis
structure. The command to do this is below.

trel = poly2trellis([5 4],[23 35 0;0 5 13]); % Define trellis.

Using the Encoder

Below is a script that uses this encoder.

len = 1000;

msg = randi([0 1],2*len,1); % Random binary message of 2-bit symbols

trel = poly2trellis([5 4],[23 35 0;0 5 13]); % Trellis

% Create a ConvolutionalEncoder System object

hConvEnc = comm.ConvolutionalEncoder(trel);

% Create a ViterbiDecoder System object

hVitDec = comm.ViterbiDecoder(trel, 'InputFormat', 'hard', ...

 'TracebackDepth', 34, 'TerminationMethod', 'Continuous');

% Create a ErrorRate Calculator System object. Since each symbol represents

% two bits, the receive delay for this object is twice the traceback length

% of the viterbi decoder.

hErrorCalc = comm.ErrorRate('ReceiveDelay', 68);

ber = zeros(3,1); % Store BER values

code = step(hConvEnc,msg); % Encode the message.

ncode = rem(code + randerr(3*len,1,[0 1;.96 .04]),2); % Add noise.

decoded = step(hVitDec, ncode); % Decode.

ber = step(hErrorCalc, msg, decoded);

convenc accepts a vector containing 2-bit symbols and produces a vector containing 3-
bit symbols, while vitdec does the opposite. Also notice that biterr ignores the first 68
elements of decoded. That is, the decoding delay is 68, which is the number of bits per
symbol (2) of the recovered message times the traceback depth value (34) in the vitdec
function. The first 68 elements of decoded are 0s, while subsequent elements represent
the decoded messages.

Design a Rate 2/3 Feedforward Encoder Using Simulink

This example uses the rate 2/3 feedforward convolutional encoder depicted in the
following figure. The description explains how to determine the coding blocks' parameters

6-55

6 System Design

from a schematic of a rate 2/3 feedforward encoder. This example also illustrates the use
of the Error Rate Calculation block with a receive delay.

+

+

+

z-1 z-1 z-1 z-1

z-1 z-1 z-1

Second output

Third output

First output

First input

Second input

1 0 0 1 1

1 1 1 0 1

0 1 0 1

1 0 1 1

How to Determine Coding Parameters

The Convolutional Encoder and Viterbi Decoder blocks can implement this code
if their parameters have the appropriate values.

The encoder's constraint length is a vector of length 2 since the encoder has two inputs.
The elements of this vector indicate the number of bits stored in each shift register,
including the current input bits. Counting memory spaces in each shift register in the
diagram and adding one for the current inputs leads to a constraint length of [5 4].

To determine the code generator parameter as a 2-by-3 matrix of octal numbers, use the
element in the ith row and jth column to indicate how the ith input contributes to the
jth output. For example, to compute the element in the second row and third column,
notice that the leftmost and two rightmost elements in the second shift register of the
diagram feed into the sum that forms the third output. Capture this information as the
binary number 1011, which is equivalent to the octal number 13. The full value of the
code generator matrix is [27 33 0; 0 5 13].

To use the constraint length and code generator parameters in the Convolutional
Encoder and Viterbi Decoder blocks, use the poly2trellis function to convert those
parameters into a trellis structure.

6-56

 Error Detection and Correction

How to Simulate the Encoder

The following model simulates this encoder.

To open the completed model, enter doc_convcoding at the MATLAB command line. To
build the model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Comm Sources library

• Set Probability of a zero to .5.
• Set Initial seed to any positive integer scalar, preferably the output of the

randseed function.
• Set Sample time to .5.
• Check the Frame-based outputs check box.
• Set Samples per frame to 2.

• Convolutional Encoder

• Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).
• Binary Symmetric Channel, in the Channels library

• Set Error probability to 0.02.
• Set Initial seed to any positive integer scalar, preferably the output of the

randseed function.
• Clear the Output error vector check box.

• Viterbi Decoder

• Set Trellis structure to poly2trellis([5 4],[23 35 0; 0 5 13]).
• Set Decision type to Hard decision.

• Error Rate Calculation, in the Comm Sinks library

• Set Receive delay to 68.

6-57

6 System Design

• Set Output data to Port.
• Check the Stop simulation check box.
• Set Target number of errors to 100.

• Display, in the Simulink Sinks library

• Drag the bottom edge of the icon to make the display big enough for three entries.

Connect the blocks as in the figure. From the model window's Simulation menu, select
Model Configuration parameters. In the Configuration Parameters dialog box, set
Stop time to inf.

Notes on the Model

The matrix size annotations appear on the connecting lines only if you click the Display
menu and select Signals & Ports > Signal Dimensions. The encoder accepts a 2-
by-1 column vector and produces a 3-by-1 column vector, while the decoder does the
opposite. The Samples per frame parameter in the Bernoulli Binary Generator block is
2 because the block must generate a message word of length 2.

The Receive delay parameter in the Error Rate Calculation block is 68, which is the
vector length (2) of the recovered message times the Traceback depth value (34) in the
Viterbi Decoder block. If you examine the transmitted and received signals as matrices in
the MATLAB workspace, you see that the first 34 rows of the recovered message consist
of zeros, while subsequent rows are the decoded messages. Thus the delay in the received
signal is 34 vectors of length 2, or 68 samples.

Running the model produces display output consisting of three numbers: the error rate,
the total number of errors, and the total number of comparisons that the Error Rate
Calculation block makes during the simulation. (The first two numbers vary depending
on your Initial seed values in the Bernoulli Binary Generator and Binary Symmetric
Channel blocks.) The simulation stops after 100 errors occur, because Target number
of errors is set to 100 in the Error Rate Calculation block. The error rate is much less
than 0.02, the Error probability in the Binary Symmetric Channel block.

Puncture a Convolutional Code Using MATLAB

This example processes a punctured convolutional code. It begins by generating 30,000
random bits and encoding them using a rate-3/4 convolutional encoder with a puncture
pattern of [1 1 1 0 0 1]. The resulting vector contains 40,000 bits, which are mapped to
values of -1 and 1 for transmission. The punctured code, punctcode, passes through an

6-58

 Error Detection and Correction

additive white Gaussian noise channel. Then vitdec decodes the noisy vector using the
'unquant' decision type.

Finally, the example computes the bit error rate and the number of bit errors.

len = 30000; msg = randi([0 1], len, 1); % Random data

t = poly2trellis(7, [133 171]); % Define trellis.

% Create a ConvolutionalEncoder System object

hConvEnc = comm.ConvolutionalEncoder(t, ...

 'PuncturePatternSource', 'Property', ...

 'PuncturePattern', [1;1;1;0;0;1]);

% Create an AWGNChannel System object.

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)',...

 'SNR', 3);

% Create a ViterbiDecoder System object

hVitDec = comm.ViterbiDecoder(t, 'InputFormat', 'Unquantized', ...

 'TracebackDepth', 96, 'TerminationMethod', 'Truncated', ...

 'PuncturePatternSource', 'Property', ...

 'PuncturePattern', [1;1;1;0;0;1]);

% Create a ErrorRate Calculator System object.

hErrorCalc = comm.ErrorRate;

berP = zeros(3,1); berPE = berP; % Store BER values

punctcode = step(hConvEnc,msg); % Length is (2*len)*2/3.

tcode = 1-2*punctcode; % Map "0" bit to 1 and "1" bit to -1

hChan.SignalPower = (tcode'*tcode)/length(tcode);

ncode = step(hChan,tcode); % Add noise.

% Decode the punctured code

decoded = step(hVitDec,ncode); % Decode.

berP = step(hErrorCalc, msg, decoded);% Bit error rate

% Erase the least reliable 100 symbols, then decode

release(hVitDec); reset(hErrorCalc)

hVitDec.ErasuresInputPort = true;

[dummy idx] = sort(abs(ncode));

erasures = zeros(size(ncode)); erasures(idx(1:100)) = 1;

decoded = step(hVitDec,ncode, erasures); % Decode.

berPE = step(hErrorCalc, msg, decoded);% Bit error rate

fprintf('Number of errors with puncturing: %d\n', berP(2))

fprintf('Number of errors with puncturing and erasures: %d\n', berPE(2))

Implement a Systematic Encoder with Feedback Using Simulink

This section explains how to use the Convolutional Encoder block to implement a
systematic encoder with feedback. A code is systematic if the actual message words

6-59

6 System Design

appear as part of the codewords. The following diagram shows an example of a
systematic encoder.

z-1 z-1z-1 z-1

Second output

First output (systematic)

Input

1 1 111

1 1 0 1 1

+

+

To implement this encoder, set the Trellis structure parameter in the Convolutional
Encoder block to poly2trellis(5, [37 33], 37). This setting corresponds to

• Constraint length: 5
• Generator polynomial pair: [37 33]
• Feedback polynomial: 37

The feedback polynomial is represented by the binary vector [1 1 1 1 1], corresponding to
the upper row of binary digits. These digits indicate connections from the outputs of the
registers to the adder. The initial 1 corresponds to the input bit. The octal representation
of the binary number 11111 is 37.

To implement a systematic code, set the first generator polynomial to be the same as the
feedback polynomial in the Trellis structure parameter of the Convolutional Encoder
block. In this example, both polynomials have the octal representation 37.

The second generator polynomial is represented by the binary vector [1 1 0 1 1],
corresponding to the lower row of binary digits. The octal number corresponding to the
binary number 11011 is 33.

For more information on setting the mask parameters for the Convolutional Encoder
block, see “Polynomial Description of a Convolutional Code” on page 6-39 in the
Communications System Toolbox documentation.

6-60

 Error Detection and Correction

Soft-Decision Decoding

This example creates a rate 1/2 convolutional code. It uses a quantizer and the Viterbi
Decoder block to perform soft-decision decoding. This description covers these topics:

• “Overview of the Simulation” on page 6-61
• “Defining the Convolutional Code” on page 6-62
• “Mapping the Received Data” on page 6-63
• “Decoding the Convolutional Code” on page 6-64
• “Delay in Received Data” on page 6-65
• “Comparing Simulation Results with Theoretical Results” on page 6-65

Overview of the Simulation

The model is in the following figure. To open the model, enter doc_softdecision at
the MATLAB command line. The simulation creates a random binary message signal,
encodes the message into a convolutional code, modulates the code using the binary
phase shift keying (BPSK) technique, and adds white Gaussian noise to the modulated
data in order to simulate a noisy channel. Then, the simulation prepares the received
data for the decoding block and decodes. Finally, the simulation compares the decoded
information with the original message signal in order to compute the bit error rate. The
Convolutional encoder is configured as a rate 1/2 encoder. For every 2 bits, the encoder
adds another 2 redundant bits. To accommodate this, and add the correct amount of
noise, the Eb/No (dB) parameter of the AWGN block is in effect halved by subtracting
10*log10(2). The simulation ends after processing 100 bit errors or 107 message bits,
whichever comes first.

6-61

6 System Design

Defining the Convolutional Code

The feedforward convolutional encoder in this example is depicted below.

Input

First output

1

1

1

1

1

1

0 1

1

0

1

1

00

Second output

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

The encoder's constraint length is a scalar since the encoder has one input. The value
of the constraint length is the number of bits stored in the shift register, including the
current input. There are six memory registers, and the current input is one bit. Thus the
constraint length of the code is 7.

6-62

 Error Detection and Correction

The code generator is a 1-by-2 matrix of octal numbers because the encoder has one input
and two outputs. The first element in the matrix indicates which input values contribute
to the first output, and the second element in the matrix indicates which input values
contribute to the second output.

For example, the first output in the encoder diagram is the modulo-2 sum of the
rightmost and the four leftmost elements in the diagram's array of input values. The
seven-digit binary number 1111001 captures this information, and is equivalent to
the octal number 171. The octal number 171 thus becomes the first entry of the code
generator matrix. Here, each triplet of bits uses the leftmost bit as the most significant
bit. The second output corresponds to the binary number 1011011, which is equivalent to
the octal number 133. The code generator is therefore [171 133].

The Trellis structure parameter in the Convolutional Encoder block tells the block
which code to use when processing data. In this case, the poly2trellis function, in
Communications System Toolbox, converts the constraint length and the pair of octal
numbers into a valid trellis structure.

While the message data entering the Convolutional Encoder block is a scalar bit stream,
the encoded data leaving the block is a stream of binary vectors of length 2.

Mapping the Received Data

The received data, that is, the output of the AWGN Channel block, consists of complex
numbers that are close to -1 and 1. In order to reconstruct the original binary message,
the receiver part of the model must decode the convolutional code. The Viterbi
Decoder block in this model expects its input data to be integers between 0 and 7. The
demodulator, a custom subsystem in this model, transforms the received data into a
format that the Viterbi Decoder block can interpret properly. More specifically, the
demodulator subsystem

• Converts the received data signal to a real signal by removing its imaginary part. It
is reasonable to assume that the imaginary part of the received data does not contain
essential information, because the imaginary part of the transmitted data is zero
(ignoring small roundoff errors) and because the channel noise is not very powerful.

• Normalizes the received data by dividing by the standard deviation of the noise
estimate and then multiplying by -1.

• Quantizes the normalized data using three bits.

The combination of this mapping and the Viterbi Decoder block's decision mapping
reverses the BPSK modulation that the BPSK Modulator Baseband block performs on

6-63

6 System Design

the transmitting side of this model. To examine the demodulator subsystem in more
detail, double-click the icon labeled Soft-Output BPSK Demodulator.

Decoding the Convolutional Code

After the received data is properly mapped to length-2 vectors of 3-bit decision values,
the Viterbi Decoder block decodes it. The block uses a soft-decision algorithm with 23

different input values because the Decision type parameter is Soft Decision and the
Number of soft decision bits parameter is 3.

Soft-Decision Interpretation of Data

When the Decision type parameter is set to Soft Decision, the Viterbi Decoder block
requires input values between 0 and 2b-1, where b is the Number of soft decision bits
parameter. The block interprets 0 as the most confident decision that the codeword bit
is a 0 and interprets 2b-1 as the most confident decision that the codeword bit is a 1. The
values in between these extremes represent less confident decisions. The following table
lists the interpretations of the eight possible input values for this example.

Decision Value Interpretation

0 Most confident 0
1 Second most confident 0
2 Third most confident 0
3 Least confident 0
4 Least confident 1
5 Third most confident 1
6 Second most confident 1
7 Most confident 1

Traceback and Decoding Delay

The Traceback depth parameter in the Viterbi Decoder block represents the length of
the decoding delay. Typical values for a traceback depth are about five or six times the
constraint length, which would be 35 or 42 in this example. However, some hardware
implementations offer options of 48 and 96. This example chooses 48 because that is
closer to the targets (35 and 42) than 96 is.

6-64

 Error Detection and Correction

Delay in Received Data

The Error Rate Calculation block's Receive delay parameter is nonzero because a
given message bit and its corresponding recovered bit are separated in time by a nonzero
amount of simulation time. The Receive delay parameter tells the block which elements
of its input signals to compare when checking for errors.

In this case, the Receive delay value is equal to the Traceback depth value (49).
Comparing Simulation Results with Theoretical Results

This section describes how to compare the bit error rate in this simulation with the
bit error rate that would theoretically result from unquantized decoding. The process
includes a few steps, described in these sections:
Computing Theoretical Bounds for the Bit Error Rate

To calculate theoretical bounds for the bit error rate Pb of the convolutional code in this
model, you can use this estimate based on unquantized-decision decoding:

P c Pb d d

d f

<
=

•

Â

In this estimate, cd is the sum of bit errors for error events of distance d, and f is the free
distance of the code. The quantity Pd is the pairwise error probability, given by

P dR
E

N
d

b=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

1

2
0

erfc

where R is the code rate of 1/2, and erfc is the MATLAB complementary error function,
defined by

erfc()x e dt
t

x

= -
•

Ú
2 2

p

Values for the coefficients cd and the free distance f are in published articles such as
Frenger, P., P. Orten, and Ottosson, “Convolutional Codes with Optimum Distance
Spectrum,” IEEE Communications vol. 3, pp. 317-319, November 1999. The free distance
for this code is f = 10.

6-65

6 System Design

The following commands calculate the values of Pb for Eb/N0 values in the range from 1
to 4, in increments of 0.5:

EbNoVec = [1:0.5:4.0];

R = 1/2;

% Errs is the vector of sums of bit errors for

% error events at distance d, for d from 10 to 29.

Errs = [36 0 211 0 1404 0 11633 0 77433 0 502690 0,...

 3322763 0 21292910 0 134365911 0 843425871 0];

% P is the matrix of pairwise error probilities, for

% Eb/No values in EbNoVec and d from 10 to 29.

P = zeros(20,7); % Initialize.

for d = 10:29

 P(d-9,:) = (1/2)*erfc(sqrt(d*R*10.^(EbNoVec/10)));

end

% Bounds is the vector of upper bounds for the bit error

% rate, for Eb/No values in EbNoVec.

Bounds = Errs*P;

Simulating Multiple Times to Collect Bit Error Rates

You can efficiently vary the simulation parameters by using the sim function to run the
simulation from the MATLAB command line. For example, the following code calculates
the bit error rate at bit energy-to-noise ratios ranging from 1 dB to 4 dB, in increments of
0.5 dB. It collects all bit error rates from these simulations in the matrix BERVec. It also
plots the bit error rates in a figure window along with the theoretical bounds computed in
the preceding code fragment.

Note First open the model by clicking here in the MATLAB Help browser. Then execute
these commands, which might take a few minutes.

% Plot theoretical bounds and set up figure.

figure;

semilogy(EbNoVec,Bounds,'bo',1,NaN,'r*');

xlabel('Eb/No (dB)'); ylabel('Bit Error Rate');

title('Bit Error Rate (BER)');

legend('Theoretical bound on BER','Actual BER');

axis([1 4 1e-5 1]);

hold on;

BERVec = [];

% Make the noise level variable.

6-66

 Error Detection and Correction

set_param('doc_softdecision/AWGN Channel',...

 'EsNodB','EbNodB+10*log10(1/2)');

% Simulate multiple times.

for n = 1:length(EbNoVec)

 EbNodB = EbNoVec(n);

 sim('doc_softdecision',5000000);

 BERVec(n,:) = BER_Data;

 semilogy(EbNoVec(n),BERVec(n,1),'r*'); % Plot point.

 drawnow;

end

hold off;

Note The estimate for Pb assumes that the decoder uses unquantized data, that is, an
infinitely fine quantization. By contrast, the simulation in this example uses 8-level (3-
bit) quantization. Because of this quantization, the simulated bit error rate is not quite
as low as the bound when the signal-to-noise ratio is high.

The plot of bit error rate against signal-to-noise ratio follows. The locations of your actual
BER points might vary because the simulation involves random numbers.

6-67

6 System Design

Tailbiting Encoding Using Feedback Encoders

This example demonstrates Tailbiting encoding using feedback encoders. For feedback
encoders, the ending state depends on the entire block of data. To accomplish tailbiting,
you must calculate for a given information vector (of N bits), the initial state, that leads
to the same ending state after the block of data is encoded.

This is achieved in two steps:

• The first step is to determine the zero-state response for a given block of data. The
encoder starts in the all-zeros state. The whole block of data is input and the output
bits are ignored. After N bits, the encoder is in a state XN [zs]. From this state, we
calculate the corresponding initial state X0 and initialize the encoder with X0.

• The second step is the actual encoding. The encoder starts with the initial state X0,
the data block is input and a valid codeword is output which conforms to the same
state boundary condition.

Refer to [8] for a theoretical calculation of the initial state X0 from XN [zs] using state-
space formulation. This is a one-time calculation which depends on the block length and
in practice could be implemented as a look-up table. Here we determine this mapping
table by simulating all possible entries for a chosen trellis and block length.

To open the model, type doc_mtailbiting_wfeedback at the MATLAB command line.

function mapStValues = getMapping(blkLen, trellis)

% The function returns the mapping value for the given block

length and trellis to be used for determining the initial

state from the zero-state response.

% All possible combinations of the mappings

mapStValuesTab = perms(0:trellis.numStates-1);

6-68

 Error Detection and Correction

% Loop over all the combinations of the mapping entries:

for i = 1:length(mapStValuesTab)

mapStValues = mapStValuesTab(i,:);

% Model parameterized for the Block length

sim('mtailbiting_wfeedback');

% Check the boundary condition for each run

% if ending and starting states match, choose that mapping set

if unique(out)==0

 return

 end

end

Selecting the returned mapStValues for the Table data parameter of the Direct
Lookup Table (n-D) block in the Lookup subsystem will perform tailbiting encoding
for the chosen block length and trellis.

Selected Bibliography for Convolutional Coding

[1] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B. Weinstein, Data
Communications Principles, New York, Plenum Press, 1992.

[3] Frenger, P., P. Orten, and T. Ottosson, "Convolution Codes with Optimum Distance
Spectrum," IEEE Communications Letters, vol. 3, pp. 317-319, November 1999.

Linear Block Codes

• “Represent Words for Linear Block Codes” on page 6-69
• “Configure Parameters for Linear Block Codes” on page 6-73
• “Create and Decode Linear Block Codes” on page 6-77

Represent Words for Linear Block Codes

The cyclic, Hamming, and generic linear block code functionality in this product offers
you multiple ways to organize bits in messages or codewords. These topics explain the
available formats:

6-69

6 System Design

• “Use MATLAB to Create Messages and Codewords in Binary Vector Format” on page
6-70

• “Use MATLAB to Create Messages and Codewords in Binary Matrix Format” on page
6-71

• “Use MATLAB to Create Messages and Codewords in Decimal Vector Format” on
page 6-72

To learn how to represent words for BCH or Reed-Solomon codes, see “Represent Words
for BCH Codes” on page 6-88 or “Represent Words for Reed-Solomon Codes” on page
6-95.

Use MATLAB to Create Messages and Codewords in Binary Vector Format

Your messages and codewords can take the form of vectors containing 0s and 1s. For
example, messages and codes might look like msg and code in the lines below.

n = 6; k = 4; % Set codeword length and message length

% for a [6,4] code.

msg = [1 0 0 1 1 0 1 0 1 0 1 1]'; % Message is a binary column.

code = encode(msg,n,k,'cyclic'); % Code will be a binary column.

msg'

code'

The output is below.

ans =

 Columns 1 through 5

 1 0 0 1 1

 Columns 6 through 10

 0 1 0 1 0

 Columns 11 through 12

 1 1

ans =

 Columns 1 through 5

6-70

 Error Detection and Correction

 1 1 1 0 0

 Columns 6 through 10

 1 0 0 1 0

 Columns 11 through 15

 1 0 0 1 1

 Columns 16 through 18

 0 1 1

In this example, msg consists of 12 entries, which are interpreted as three 4-digit
(because k = 4) messages. The resulting vector code comprises three 6-digit (because
n = 6) codewords, which are concatenated to form a vector of length 18. The parity bits
are at the beginning of each codeword.

Use MATLAB to Create Messages and Codewords in Binary Matrix Format

You can organize coding information so as to emphasize the grouping of digits into
messages and codewords. If you use this approach, each message or codeword occupies a
row in a binary matrix. The example below illustrates this approach by listing each 4-bit
message on a distinct row in msg and each 6-bit codeword on a distinct row in code.

n = 6; k = 4; % Set codeword length and message length.

msg = [1 0 0 1; 1 0 1 0; 1 0 1 1]; % Message is a binary matrix.

code = encode(msg,n,k,'cyclic'); % Code will be a binary matrix.

msg

code

The output is below.

msg =

 1 0 0 1

 1 0 1 0

 1 0 1 1

code =

6-71

6 System Design

 1 1 1 0 0 1

 0 0 1 0 1 0

 0 1 1 0 1 1

Note: In the binary matrix format, the message matrix must have k columns. The
corresponding code matrix has n columns. The parity bits are at the beginning of each
row.

Use MATLAB to Create Messages and Codewords in Decimal Vector Format

Your messages and codewords can take the form of vectors containing integers. Each
element of the vector gives the decimal representation of the bits in one message or one
codeword.

Note: If 2^n or 2^k is very large, you should use the default binary format instead of the
decimal format. This is because the function uses a binary format internally, while the
roundoff error associated with converting many bits to large decimal numbers and back
might be substantial.

Note: When you use the decimal vector format, encode expects the leftmost bit to be the
least significant bit.

The syntax for the encode command must mention the decimal format explicitly, as in
the example below. Notice that /decimal is appended to the fourth argument in the
encode command.

n = 6; k = 4; % Set codeword length and message length.

msg = [9;5;13]; % Message is a decimal column vector.

% Code will be a decimal vector.

code = encode(msg,n,k,'cyclic/decimal')

The output is below.

code =

 39

 20

 54

6-72

 Error Detection and Correction

Note: The three examples above used cyclic coding. The formats for messages and codes
are similar for Hamming and generic linear block codes.

Configure Parameters for Linear Block Codes

This subsection describes the items that you might need in order to process [n,k] cyclic,
Hamming, and generic linear block codes. The table below lists the items and the coding
techniques for which they are most relevant.

Parameters Used in Block Coding Techniques

Parameter Block Coding Technique

“Generator Matrix” on page 6-73 Generic linear block
“Parity-Check Matrix” on page 6-73 Generic linear block
“Generator Polynomial” on page 6-75 Cyclic
“Decoding Table” on page 6-75 Generic linear block, Hamming

Generator Matrix

The process of encoding a message into an [n,k] linear block code is determined by a k-by-
n generator matrix G. Specifically, the 1-by-k message vector v is encoded into the 1-by-
n codeword vector vG. If G has the form [Ik P] or [P Ik], where P is some k-by-(n-k) matrix
and Ik is the k-by-k identity matrix, G is said to be in standard form. (Some authors,
e.g., Clark and Cain [2], use the first standard form, while others, e.g., Lin and Costello
[3], use the second.) Most functions in this toolbox assume that a generator matrix is in
standard form when you use it as an input argument.

Some examples of generator matrices are in the next section, “Parity-Check Matrix” on
page 6-73.

Parity-Check Matrix

Decoding an [n,k] linear block code requires an (n-k)-by-n parity-check matrix H. It
satisfies GHtr = 0 (mod 2), where Htr denotes the matrix transpose of H, G is the code's
generator matrix, and this zero matrix is k-by-(n-k). If G = [Ik P] then H = [-Ptr In-k]. Most
functions in this product assume that a parity-check matrix is in standard form when you
use it as an input argument.

6-73

6 System Design

The table below summarizes the standard forms of the generator and parity-check
matrices for an [n,k] binary linear block code.

Type of Matrix Standard Form Dimensions

Generator [Ik P] or [P Ik] k-by-n
Parity-check [-P' In-k] or [In-k -P'] (n-k)-by-n

Ik is the identity matrix of size k and the ' symbol indicates matrix transpose. (For
binary codes, the minus signs in the parity-check form listed above are irrelevant; that is,
-1 = 1 in the binary field.)

Examples

In the command below, parmat is a parity-check matrix and genmat is a generator
matrix for a Hamming code in which [n,k] = [23-1, n-3] = [7,4]. genmat has the standard
form [P Ik].

[parmat,genmat] = hammgen(3)

parmat =

 1 0 0 1 0 1 1

 0 1 0 1 1 1 0

 0 0 1 0 1 1 1

genmat =

 1 1 0 1 0 0 0

 0 1 1 0 1 0 0

 1 1 1 0 0 1 0

 1 0 1 0 0 0 1

The next example finds parity-check and generator matrices for a [7,3] cyclic code. The
cyclpoly function is mentioned below in “Generator Polynomial” on page 6-75.

genpoly = cyclpoly(7,3);

[parmat,genmat] = cyclgen(7,genpoly)

parmat =

 1 0 0 0 1 1 0

 0 1 0 0 0 1 1

 0 0 1 0 1 1 1

 0 0 0 1 1 0 1

6-74

 Error Detection and Correction

genmat =

 1 0 1 1 1 0 0

 1 1 1 0 0 1 0

 0 1 1 1 0 0 1

The example below converts a generator matrix for a [5,3] linear block code into the
corresponding parity-check matrix.

genmat = [1 0 0 1 0; 0 1 0 1 1; 0 0 1 0 1];

parmat = gen2par(genmat)

parmat =

 1 1 0 1 0

 0 1 1 0 1

The same function gen2par can also convert a parity-check matrix into a generator
matrix.

Generator Polynomial

Cyclic codes have algebraic properties that allow a polynomial to determine the coding
process completely. This so-called generator polynomial is a degree-(n-k) divisor of the
polynomial xn-1. Van Lint [5] explains how a generator polynomial determines a cyclic
code.

The cyclpoly function produces generator polynomials for cyclic codes. cyclpoly
represents a generator polynomial using a row vector that lists the polynomial's
coefficients in order of ascending powers of the variable. For example, the command

genpoly = cyclpoly(7,3)

genpoly =

 1 0 1 1 1

finds that one valid generator polynomial for a [7,3] cyclic code is 1 + x2 + x3 + x4.

Decoding Table

A decoding table tells a decoder how to correct errors that might have corrupted the
code during transmission. Hamming codes can correct any single-symbol error in any

6-75

6 System Design

codeword. Other codes can correct, or partially correct, errors that corrupt more than one
symbol in a given codeword.

This toolbox represents a decoding table as a matrix with n columns and 2^(n-k)
rows. Each row gives a correction vector for one received codeword vector. A Hamming
decoding table has n+1 rows. The syndtable function generates a decoding table for a
given parity-check matrix.

Use a Decoding Table in MATLAB

The script below shows how to use a Hamming decoding table to correct an error in a
received message. The hammgen function produces the parity-check matrix, while the
syndtable function produces the decoding table. The transpose of the parity-check
matrix is multiplied on the left by the received codeword, yielding the syndrome. The
decoding table helps determine the correction vector. The corrected codeword is the sum
(modulo 2) of the correction vector and the received codeword.

% Use a [7,4] Hamming code.

m = 3; n = 2^m-1; k = n-m;

parmat = hammgen(m); % Produce parity-check matrix.

trt = syndtable(parmat); % Produce decoding table.

recd = [1 0 0 1 1 1 1] % Suppose this is the received vector.

syndrome = rem(recd * parmat',2);

syndrome_de = bi2de(syndrome,'left-msb'); % Convert to decimal.

disp(['Syndrome = ',num2str(syndrome_de),...

 ' (decimal), ',num2str(syndrome),' (binary)'])

corrvect = trt(1+syndrome_de,:) % Correction vector

% Now compute the corrected codeword.

correctedcode = rem(corrvect+recd,2)

The output is below.

recd =

 1 0 0 1 1 1 1

Syndrome = 3 (decimal), 0 1 1 (binary)

corrvect =

 0 0 0 0 1 0 0

correctedcode =

6-76

 Error Detection and Correction

 1 0 0 1 0 1 1

Create and Decode Linear Block Codes

The functions for encoding and decoding cyclic, Hamming, and generic linear block codes
are encode and decode. This section discusses how to use these functions to create and
decode generic linear block codes, cyclic codes, and Hamming codes.

Generic Linear Block Codes

Encoding a message using a generic linear block code requires a generator matrix. If you
have defined variables msg, n, k, and genmat, either of the commands

code = encode(msg,n,k,'linear',genmat);

code = encode(msg,n,k,'linear/decimal',genmat);

encodes the information in msg using the [n,k] code that the generator matrix genmat
determines. The /decimal option, suitable when 2^n and 2^k are not very large,
indicates that msg contains nonnegative decimal integers rather than their binary
representations. See “Represent Words for Linear Block Codes” on page 6-69 or the
reference page for encode for a description of the formats of msg and code.

Decoding the code requires the generator matrix and possibly a decoding table. If you
have defined variables code, n, k, genmat, and possibly also trt, then the commands

newmsg = decode(code,n,k,'linear',genmat);

newmsg = decode(code,n,k,'linear/decimal',genmat);

newmsg = decode(code,n,k,'linear',genmat,trt);

newmsg = decode(code,n,k,'linear/decimal',genmat,trt);

decode the information in code, using the [n,k] code that the generator matrix genmat
determines. decode also corrects errors according to instructions in the decoding table
that trt represents.

Example: Generic Linear Block Coding

The example below encodes a message, artificially adds some noise, decodes the noisy
code, and keeps track of errors that the decoder detects along the way. Because the
decoding table contains only zeros, the decoder does not correct any errors.

n = 4; k = 2;

genmat = [[1 1; 1 0], eye(2)]; % Generator matrix

6-77

6 System Design

msg = [0 1; 0 0; 1 0]; % Three messages, two bits each

% Create three codewords, four bits each.

code = encode(msg,n,k,'linear',genmat);

noisycode = rem(code + randerr(3,4,[0 1;.7 .3]),2); % Add noise.

trt = zeros(2^(n-k),n); % No correction of errors

% Decode, keeping track of all detected errors.

[newmsg,err] = decode(noisycode,n,k,'linear',genmat,trt);

err_words = find(err~=0) % Find out which words had errors.

The output indicates that errors occurred in the first and second words. Your results
might vary because this example uses random numbers as errors.

err_words =

 1

 2

Cyclic Codes

A cyclic code is a linear block code with the property that cyclic shifts of a codeword
(expressed as a series of bits) are also codewords. An alternative characterization of cyclic
codes is based on its generator polynomial, as mentioned in “Generator Polynomial” on
page 6-75 and discussed in [5].

Encoding a message using a cyclic code requires a generator polynomial. If you have
defined variables msg, n, k, and genpoly, then either of the commands

code = encode(msg,n,k,'cyclic',genpoly);

code = encode(msg,n,k,'cyclic/decimal',genpoly);

encodes the information in msg using the [n,k] code determined by the generator
polynomial genpoly. genpoly is an optional argument for encode. The default
generator polynomial is cyclpoly(n,k). The /decimal option, suitable when 2^n and
2^k are not very large, indicates that msg contains nonnegative decimal integers rather
than their binary representations. See “Represent Words for Linear Block Codes” on
page 6-69 or the reference page for encode for a description of the formats of msg and
code.

Decoding the code requires the generator polynomial and possibly a decoding table. If you
have defined variables code, n, k, genpoly, and trt, then the commands

newmsg = decode(code,n,k,'cyclic',genpoly);

newmsg = decode(code,n,k,'cyclic/decimal',genpoly);

newmsg = decode(code,n,k,'cyclic',genpoly,trt);

6-78

 Error Detection and Correction

newmsg = decode(code,n,k,'cyclic/decimal',genpoly,trt);

decode the information in code, using the [n,k] code that the generator matrix genmat
determines. decode also corrects errors according to instructions in the decoding table
that trt represents. genpoly is an optional argument in the first two syntaxes above.
The default generator polynomial is cyclpoly(n,k).

Example

You can modify the example in the section “Generic Linear Block Codes” on page 6-77
so that it uses the cyclic coding technique, instead of the linear block code with the
generator matrix genmat. Make the changes listed below:

• Replace the second line by

genpoly = [1 0 1]; % generator poly is 1 + x^2

• In the fifth and ninth lines (encode and decode commands), replace genmat by
genpoly and replace 'linear' by 'cyclic'.

Another example of encoding and decoding a cyclic code is on the reference page for
encode.

Hamming Codes

The reference pages for encode and decode contain examples of encoding and decoding
Hamming codes. Also, the section “Decoding Table” on page 6-75 illustrates error
correction in a Hamming code.

Hamming Codes

• “Create a Hamming Code in Binary Format Using Simulink” on page 6-79
• “Reduce the Error Rate Using a Hamming Code” on page 6-80

Create a Hamming Code in Binary Format Using Simulink

This example shows very simply how to use an encoder and decoder. It illustrates the
appropriate vector lengths of the code and message signals for the coding blocks. Because
the Error Rate Calculation block accepts only scalars or frame-based column
vectors as the transmitted and received signals, this example uses frame-based column
vectors throughout. (It thus avoids having to change signal attributes using a block such
as Convert 1-D to 2-D.)

6-79

6 System Design

Open this model by entering doc_hamming at the MATLAB command line. To build the
model, gather and configure these blocks:

• Bernoulli Binary Generator, in the Comm Sources library

• Set Probability of a zero to .5.
• Set Initial seed to any positive integer scalar, preferably the output of the

randseed function.
• Check the Frame-based outputs check box.
• Set Samples per frame to 4.

• Hamming Encoder, with default parameter values
• Hamming Decoder, with default parameter values
• Error Rate Calculation, in the Comm Sinks library, with default parameter

values

Connect the blocks as in the preceding figure. Click the Display menu and select
Signals & Ports > Signal Dimensions. After updating the diagram if necessary
(Simulation > Update Diagram), the connector lines show relevant signal attributes.
The connector lines are double lines to indicate frame-based signals, and the annotations
next to the lines show that the signals are column vectors of appropriate sizes.

Reduce the Error Rate Using a Hamming Code

• “Section Overview” on page 6-81
• “Building the Hamming Code Model” on page 6-81
• “Using the Hamming Encoder and Decoder Blocks” on page 6-82
• “Setting Parameters in the Hamming Code Model” on page 6-83
• “Labeling the Display Block” on page 6-83
• “Running the Hamming Code Model” on page 6-83
• “Displaying Frame Sizes” on page 6-84

6-80

 Error Detection and Correction

• “Adding a Scope to the Model” on page 6-84
• “Setting Parameters in the Expanded Model” on page 6-85
• “Observing Channel Errors with the Scope” on page 6-87

Section Overview

This section describes how to reduce the error rate by adding an error-correcting code.
The following figure shows an example that uses a Hamming code.

Hamming Code Model

To open a complete version of the model, type doc_hamming at the MATLAB prompt.

Building the Hamming Code Model

You can build the Hamming code model by following these steps:

1 Type doc_channel at the MATLAB prompt to open the channel noise model. Then
save the model as my_hamming in the folder where you keep your work files.

2 Drag the following blocks from the Simulink Library Browser into the model
window:

• Hamming Encoder block, from the Block sublibrary of the Error Detection and
Correction library

• Hamming Decoder block, from the Block sublibrary of the Error Detection and
Correction library

3 Click the right border of the model and drag it to the right to widen the model
window.

4 Move the Binary Symmetric Channel block, the Error Rate Calculation block, and
the Display block to the right by clicking and dragging. This creates more space
between the Binary Symmetric Channel block and the blocks next to it. The model
should now look like the following figure.

6-81

6 System Design

5 Click the Hamming Encoder block and drag it on top of the line between the
Bernoulli Binary Generator block and the Binary Symmetric Channel block, to the
right of the branch point, as shown in the following figure. Then release the mouse
button. The Hamming Encoder block should automatically connect to the line from
the Bernoulli Binary Generator block to the Binary Symmetric Channel block.

6 Click the Hamming Decoder block and drag it on top of the line between the Binary
Symmetric Channel block and the Error Rate Calculation block.

Using the Hamming Encoder and Decoder Blocks

The Hamming Encoder block encodes the data before it is sent through the channel. The
default code is the [7,4] Hamming code, which encodes message words of length 4 into
codewords of length 7. As a result, the block converts frames of size 4 into frames of size
7. The code can correct one error in each transmitted codeword.

For an [n,k] code, the input to the Hamming Encoder block must consist of vectors of size
k. In this example, k = 4.

The Hamming Decoder block decodes the data after it is sent through the channel. If
at most one error is created in a codeword by the channel, the block decodes the word
correctly. However, if more than one error occurs, the Hamming Decoder block might
decode incorrectly.

To learn more about the Communications System Toolbox block coding features, see
“Block Codes” on page 6-19in the online documentation.

6-82

 Error Detection and Correction

Setting Parameters in the Hamming Code Model

Double-click the Bernoulli Binary Generator block and make the following changes to the
parameter settings in the block's dialog box, as shown in the following figure:

1 Select the box next to Frame-based outputs.
2 Set Samples per frame to 4. This converts the output of the block into frames of

size 4, in order to meet the input requirement of the Hamming Encoder Block. See
“Sample-Based and Frame-Based Processing” on page 2-4 for more information
about frames.

Note Many blocks, such as the Hamming Encoder block, require their input to be a
vector of a specific size. If you connect a source block, such as the Bernoulli Binary
Generator block, to one of these blocks, select the box next to Frame-based outputs
in the dialog for the source, and set Samples per frame to the required value.

Labeling the Display Block

You can change the label that appears below a block to make it more informative. For
example, to change the label below the Display block to “Error Rate Display,” first select
the label with the mouse. This causes a box to appear around the text. Enter the changes
to the text in the box.

Running the Hamming Code Model

To run the model, select Simulation > Start. The model terminates after 100
errors occur. The error rate, displayed in the top window of the Display block, is
approximately .001. You get slightly different results if you change the Initial seed
parameters in the model or run a simulation for a different length of time.

6-83

6 System Design

You expect an error rate of approximately .001 for the following reason: The probability
of two or more errors occurring in a codeword of length 7 is
1 – (0.99)7 – 7(0.99)6(0.01) = 0.002

If the codewords with two or more errors are decoded randomly, you expect about half the
bits in the decoded message words to be incorrect. This indicates that .001 is a reasonable
value for the bit error rate.

To obtain a lower error rate for the same probability of error, try using a Hamming
code with larger parameters. To do this, change the parameters Codeword length
and Message length in the Hamming Encoder and Decoder block dialog boxes. You
also have to make the appropriate changes to the parameters of the Bernoulli Binary
Generator block and the Binary Symmetric Channel block.

Displaying Frame Sizes

You can display the sizes of data frames in different parts of the model by clicking the
Display menu and selecting Signals & Ports > Signal Dimensions. The line leading
out of the Bernoulli Binary Generator block is labeled [4x1], indicating that its output
consists of column vectors of size 4. Because the Hamming Encoder block uses a [7,4]
code, it converts frames of size 4 into frames of size 7, so its output is labeled [7x1].

Displaying Frame Sizes

Adding a Scope to the Model

To display the channel errors produced by the Binary Symmetric Channel block, add a
Scope block to the model. This is a good way to see whether your model is functioning
correctly. The example shown in the following figure shows where to insert the Scope
block into the model.

6-84

 Error Detection and Correction

To build this model from the one shown in the figure Hamming Code Model, follow these
steps:

1 Drag the following blocks from the Simulink Library Browser into the model
window:

• Relational Operator block, from the Simulink Logic and Bit Operations library
• Scope block, from the Simulink Sinks library
• Two copies of the Unbuffer block, from the Buffers sublibrary of the Signal

Management library in DSP System Toolbox
2 Double-click the Binary Symmetric Channel block to open its dialog box, and select

Output error vector. This creates a second output port for the block, which carries
the error vector.

3 Double-click the Scope block and click the Parameters button on the toolbar. Set
Number of axes to 2 and click OK.

4 Connect the blocks as shown in the preceding figure.

Setting Parameters in the Expanded Model

Make the following changes to the parameters for the blocks you added to the model.

Error Rate Calculation Block

Double-click the Error Rate Calculation block and clear the box next to Stop simulation
in the block's dialog box.

6-85

6 System Design

Scope Block

The Scope block displays the channel errors and uncorrected errors. To configure the
block,

1 Double-click the block to open the scope, if it is not already open.
2 Click the Parameters button on the toolbar.
3 Set Time range to 5000.
4 Click the Data history tab.
5 Type 30000 in the Limit data points to last field, and click OK.

The scope should now appear as shown.

To configure the axes, follow these steps:

1 Right-click the vertical axis at the left side of the upper scope.
2 In the context menu, select Axes properties.
3 In the Y-min field, type -1.
4 In the Y-max field, type 2, and click OK.
5 Repeat the same steps for the vertical axis of the lower scope.
6 Widen the scope window until it is roughly three times as wide as it is high. You can

do this by clicking the right border of the window and dragging the border to the
right, while pressing the mouse button.

6-86

 Error Detection and Correction

Relational Operator

Set Relational Operator to ~= in the block's dialog box. The Relational Operator block
compares the transmitted signal, coming from the Bernoulli Random Generator block,
with the received signal, coming from the Hamming Decoder block. The block outputs a 0
when the two signals agree and a 1 when they disagree.

Observing Channel Errors with the Scope

When you run the model, the Scope block displays the error data. At the end of each 5000
time steps, the scope appears as shown in the following figure. The scope then clears the
displayed data and displays the next 5000 data points.

Scope with Model Running

The upper scope shows the channel errors generated by the Binary Symmetric Channel
block. The lower scope shows errors that are not corrected by channel coding.

Click the Stop button on the toolbar at the top of the model window to stop the scope.

To zoom in on the scope so that you can see individual errors, first click the middle
magnifying glass button at the top left of the Scope window. Then click one of the lines in
the lower scope. This zooms in horizontally on the line. Continue clicking the lines in the
lower scope until the horizontal scale is fine enough to detect individual errors. A typical
example of what you might see is shown in the figure below.

6-87

6 System Design

Zooming In on the Scope

The wider rectangular pulse in the middle of the upper scope represents two 1s. These
two errors, which occur in a single codeword, are not corrected. This accounts for the
uncorrected errors in the lower scope. The narrower rectangular pulse to the right of the
upper scope represents a single error, which is corrected.

When you are done observing the errors, select Simulation > Stop.

“Export Data to MATLAB” on page 1-3 explains how to send the error data to the
MATLAB workspace for more detailed analysis.

BCH Codes

• “Represent Words for BCH Codes” on page 6-88
• “Parameters for BCH Codes” on page 6-89
• “Create and Decode BCH Codes” on page 6-89
• “Algorithms for BCH and RS Errors-only Decoding” on page 6-92

Represent Words for BCH Codes

A message for an [n,k] BCH code must be a k-column binary Galois array. The code that
corresponds to that message is an n-column binary Galois array. Each row of these Galois
arrays represents one word.

The example below illustrates how to represent words for a [15, 11] BCH code.

6-88

 Error Detection and Correction

h = comm.BCHEncoder

msg = [1 0 0 1 0; 1 0 1 1 1]; % Messages in a Galois array

obj = comm.BCHEncoder;

c1 = step(obj, msg(1,:)');

c2 = step(obj, msg(2,:)');

cbch = [c1 c2].'

The output is

 Columns 1 through 5

 1 0 0 1 0

 1 0 1 1 1

 Columns 6 through 10

 0 0 1 1 1

 0 0 0 0 1

 Columns 11 through 15

 1 0 1 0 1

 0 1 0 0 1

Parameters for BCH Codes

BCH codes use special values of n and k:

• n, the codeword length, is an integer of the form 2m-1 for some integer m > 2.
• k, the message length, is a positive integer less than n. However, only some positive

integers less than n are valid choices for k. See the BCH Encoder block reference
page for a list of some valid values of k corresponding to values of n up to 511.

Create and Decode BCH Codes

The BCH Encoder and BCH Decoder System objects create and decode BCH codes,
using the data described in “Represent Words for BCH Codes” on page 6-88 and
“Parameters for BCH Codes” on page 6-89.

The topics are

• “Example: BCH Coding Syntaxes” on page 6-90
• “Detect and Correct Errors in a BCH Code Using MATLAB” on page 6-90

6-89

6 System Design

Example: BCH Coding Syntaxes

The example below illustrates how to encode and decode data using a [15, 5] BCH code.

n = 15; k = 5; % Codeword length and message length

msg = randi([0 1],4*k,1); % Four random binary messages

% Simplest syntax for encoding

enc = comm.BCHEncoder(n,k);

dec = comm.BCHDecoder(n,k);

c1 = step(enc,msg); % BCH encoding

d1 = step(dec,c1); % BCH decoding

% Check that the decoding worked correctly.

chk = isequal(d1,msg)

% The following code shows how to perform the encoding and decoding

% operations if one chooses to prepend the parity symbols.

% Steps for converting encoded data with appended parity symbols

% to encoded data with prepended parity symbols

c11 = reshape(c1, n, []);

c12 = circshift(c11,n-k);

c1_prepend = c12(:); % BCH encoded data with prepended parity symbols

% Steps for converting encoded data with prepended parity symbols

% to encoded data with appended parity symbols prior to decoding

c21 = reshape(c1_prepend, n, []);

c22 = circshift(c21,k);

c1_append = c22(:); % BCH encoded data with appended parity symbols

% Check that the prepend-to-append conversion worked correctly.

d1_append = step(dec,c1_append);

chk = isequal(msg,d1_append)

The output is below.

chk =

 1

Detect and Correct Errors in a BCH Code Using MATLAB

The following example illustrates the decoding results for a corrupted code. The example
encodes some data, introduces errors in each codeword, and attempts to decode the noisy
code using the BCH Decoder System object.

6-90

 Error Detection and Correction

n = 15; k = 5; % Codeword length and message length

[gp,t] = bchgenpoly(n,k); % t is error-correction capability.

nw = 4; % Number of words to process

msgw = randi([0 1], nw*k, 1); % Random k-symbol messages

enc = comm.BCHEncoder(n,k,gp);

dec = comm.BCHDecoder(n,k,gp);

c = step(enc, msgw); % Encode the data.

noise = randerr(nw,n,t); % t errors per codeword

noisy = noise';

noisy = noisy(:);

cnoisy = mod(c + noisy,2); % Add noise to the code.

[dc, nerrs] = step(dec, cnoisy); % Decode cnoisy.

% Check that the decoding worked correctly.

chk2 = isequal(dc,msgw)

nerrs % Find out how many errors have been corrected.

Notice that the array of noise values contains binary values, and that the addition
operation c + noise takes place in the Galois field GF(2) because c is a Galois array in
GF(2).

The output from the example is below. The nonzero value of ans indicates that the
decoder was able to correct the corrupted codewords and recover the original message.
The values in the vector nerrs indicate that the decoder corrected t errors in each
codeword.

chk2 =

 1

nerrs =

 3

 3

 3

 3

Excessive Noise in BCH Codewords

In the previous example, the BCH Decoder System object corrected all the errors.
However, each BCH code has a finite error-correction capability. To learn more about
how the BCH Decoder System object behaves when the noise is excessive, see the

6-91

6 System Design

analogous discussion for Reed-Solomon codes in “Excessive Noise in Reed-Solomon
Codewords” on page 6-100.

Algorithms for BCH and RS Errors-only Decoding

Overview

The errors-only decoding algorithm used for BCH and RS codes can be described by the
following steps (sections 5.3.2, 5.4, and 5.6 in [2]).

1 Calculate the first 2t terms of the infinite degree syndrome polynomial, S z() .

2 If those 2t terms of S z() are all equal to 0, then the code has no errors , no correction
needs to be performed, and the decoding algorithm ends.

3 If one or more terms of S z() are nonzero, calculate the error locator polynomial,
L z() , via the Berlekamp algorithm.

4 Calculate the error evaluator polynomial, W z() , via

L Wz S z z z
t() () = ()mod

2

5 Correct an error in the codeword according to

e
i

i

im

m

m

=

-

-

W

L

()

’()

a

a

where e
im

 is the error magnitude in the i
m th position in the codeword, m is a value

less than the error-correcting capability of the code, W z() is the error magnitude

polynomial, L ’()z is the formal derivative [5] of the error locator polynomial, L z() ,
and a is the primitive element of the Galois field of the code.

Further description of several of the steps is given in the following sections.

Syndrome Calculation

For narrow-sense codes, the 2t terms of S z() are calculated by evaluating the received
codeword at successive powers of a (the field’s primitive element) from 0 to 2t-1. In other

6-92

 Error Detection and Correction

words, if we assume one-based indexing of codewords C z() and the syndrome polynomial
S z() , and that codewords are of the form [...]c c c

N1 1 , then each term Si of S z() is
given as

S c
i i

i

N

N i
=

=

- -

Â
1

1
a

Error Locator Polynomial Calculation

The error locator polynomial, L z() , is found using the Berlekamp algorithm. A complete
description of this algorithm is found in [2], but we summarize the algorithm as follows.

We define the following variables.

Variable Description

n Iterator variable
k Iterator variable
L Length of the feedback register used to generate the first 2t

terms of S z()

D(z) Correction polynomial
d Discrepancy

The following diagram shows the iterative procedure (i.e., the Berlekamp algorithm) used
to find L z() .

6-93

6 System Design

STOP

d S

d

z z

i n i

i

L

=

=

=

≠

() = () −

−

=

∑

0

0

:

*

Λ

Λ Λ ddD z

L n k L n k

k n L

D z
z

d

L Lz z

D z zD z

()

−
<

<

≥

= −

= −

=
()

=() = ()

=

:

()

() ()

*

**

Λ

Λ Λ

nn n n t= + 1 2:

n L k

z D z z

= = = −

= =

0 0 1

1

, , ,

() , ()

 Λ

6-94

 Error Detection and Correction

Error Evaluator Polynomial Calculation

The error evaluator polynomial, W z() , is simply the convolution of L z() and S z() .

Reed-Solomon Codes

• “Represent Words for Reed-Solomon Codes” on page 6-95
• “Parameters for Reed-Solomon Codes” on page 6-96
• “Create and Decode Reed-Solomon Codes” on page 6-97
• “Find a Generator Polynomial” on page 6-101
• “Reed Solomon Examples with Shortening, Puncturing, and Erasures” on page

6-103

Represent Words for Reed-Solomon Codes

This toolbox supports Reed-Solomon codes that use m-bit symbols instead of bits. A
message for an [n,k] Reed-Solomon code must be a k-column Galois array in the field
GF(2m). Each array entry must be an integer between 0 and 2m-1. The code corresponding
to that message is an n-column Galois array in GF(2m). The codeword length n must be
between 3 and 2m-1.

Note: For information about Galois arrays and how to create them, see “Representing
Elements of Galois Fields” on page 6-108 or the reference page for the gf function.

The example below illustrates how to represent words for a [7,3] Reed-Solomon code.

n = 7; k = 3; % Codeword length and message length

m = 3; % Number of bits in each symbol

msg = [1 6 4; 0 4 3]; % Message is a Galois array.

obj = comm.RSEncoder(n, k);

c1 = step(obj, msg(1,:)');

c2 = step(obj, msg(2,:)');

c = [c1 c2].'

The output is

C =

6-95

6 System Design

 1 6 4 4 3 6 3

 0 4 3 3 7 4 7

Parameters for Reed-Solomon Codes

This section describes several integers related to Reed-Solomon codes and discusses how
to find generator polynomials.

Allowable Values of Integer Parameters

The table below summarizes the meanings and allowable values of some positive integer
quantities related to Reed-Solomon codes as supported in this toolbox. The quantities n
and k are input parameters for Reed-Solomon functions in this toolbox.

Symbol Meaning Value or Range

m Number of bits per symbol Integer between 3 and 16
n Number of symbols per

codeword
Integer between 3 and 2m-1

k Number of symbols per
message

Positive integer less than n,
such that n-k is even

t Error-correction capability
of the code

(n-k)/2

Generator Polynomial

The rsgenpoly function produces generator polynomials for Reed-Solomon codes.
rsgenpoly represents a generator polynomial using a Galois row vector that lists the
polynomial's coefficients in order of descending powers of the variable. If each symbol has
m bits, the Galois row vector is in the field GF(2m). For example, the command

r = rsgenpoly(15,13)

r = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 1 6 8

finds that one generator polynomial for a [15,13] Reed-Solomon code is
X2 + (A2 + A)X + (A3), where A is a root of the default primitive polynomial for GF(16).

6-96

 Error Detection and Correction

Algebraic Expression for Generator Polynomials

The generator polynomials that rsgenpoly produces have the form (X - Ab)(X - Ab+1)...
(X - Ab+2t-1), where b is an integer, A is a root of the primitive polynomial for the Galois
field, and t is (n-k)/2. The default value of b is 1. The output from rsgenpoly is the
result of multiplying the factors and collecting like powers of X. The example below
checks this formula for the case of a [15,13] Reed-Solomon code, using b = 1.

n = 15;

a = gf(2,log2(n+1)); % Root of primitive polynomial

f1 = [1 a]; f2 = [1 a^2]; % Factors that form generator polynomial

f = conv(f1,f2) % Generator polynomial, same as r above.

Create and Decode Reed-Solomon Codes

The RS Encoder and RS Decoder System objects create and decode Reed-Solomon
codes, using the data described in “Represent Words for Reed-Solomon Codes” on page
6-95 and “Parameters for Reed-Solomon Codes” on page 6-96.

This section illustrates how to use the RS Encoder and RS Decoder System objects.
The topics are

• “Reed-Solomon Coding Syntaxes in MATLAB” on page 6-97
• “Detect and Correct Errors in a Reed-Solomon Code Using MATLAB” on page 6-99
• “Excessive Noise in Reed-Solomon Codewords” on page 6-100
• “Create Shortened Reed-Solomon Codes” on page 6-100

Reed-Solomon Coding Syntaxes in MATLAB

The example below illustrates multiple ways to encode and decode data using a [15,13]
Reed-Solomon code. The example shows that you can

• Vary the generator polynomial for the code, using rsgenpoly to produce a different
generator polynomial.

• Vary the primitive polynomial for the Galois field that contains the symbols, using an
input argument in gf.

• Vary the position of the parity symbols within the codewords, choosing either the end
(default) or beginning.

This example also shows that corresponding syntaxes of the RS Encoder and RS
Decoder System objects use the same input arguments, except for the first input
argument.

6-97

6 System Design

m = 4; % Number of bits in each symbol

n = 2^m-1; k = 13; % Codeword length and message length

msg = randi([0 m-1],4*k,1); % Four random integer messages

% Simplest syntax for encoding

hEnc = comm.RSEncoder(n,k);

hDec = comm.RSDecoder(n,k);

c1 = step(hEnc, msg);

d1 = step(hDec, c1);

% Vary the generator polynomial for the code.

release(hEnc), release(hDec)

hEnc.GeneratorPolynomialSource = 'Property';

hDec.GeneratorPolynomialSource = 'Property';

hEnc.GeneratorPolynomial = rsgenpoly(n,k,19,2);

hDec.GeneratorPolynomial = rsgenpoly(n,k,19,2);

c2 = step(hEnc, msg);

d2 = step(hDec, c2);

% Vary the primitive polynomial for GF(16).

release(hEnc), release(hDec)

hEnc.PrimitivePolynomialSource = 'Property';

hDec.PrimitivePolynomialSource = 'Property';

hEnc.GeneratorPolynomialSource = 'Auto';

hDec.GeneratorPolynomialSource = 'Auto';

hEnc.PrimitivePolynomial = [1 1 0 0 1];

hDec.PrimitivePolynomial = [1 1 0 0 1];

c3 = step(hEnc, msg);

d3 = step(hDec, c3);

% Check that the decoding worked correctly.

chk = isequal(d1,msg) & isequal(d2,msg) & isequal(d3,msg)

% The following code shows how to perform the encoding and decoding

% operations if one chooses to prepend the parity symbols.

% Steps for converting encoded data with appended parity symbols

% to encoded data with prepended parity symbols

c31 = reshape(c3, n, []);

c32 = circshift(c31,n-k);

c3_prepend = c32(:); % RS encoded data with prepended parity symbols

% Steps for converting encoded data with prepended parity symbols

6-98

 Error Detection and Correction

% to encoded data with appended parity symbols prior to decoding

c34 = reshape(c3_prepend, n, []);

c35 = circshift(c34,k);

c3_append = c35(:); % RS encoded data with appended parity symbols

% Check that the prepend-to-append conversion worked correctly.

d3_append = step(hDec,c3_append);

chk = isequal(msg,d3_append)

The output is

chk =

 1

Detect and Correct Errors in a Reed-Solomon Code Using MATLAB

The example below illustrates the decoding results for a corrupted code. The example
encodes some data, introduces errors in each codeword, and attempts to decode the noisy
code using the RS Decoder System object.

m = 3; % Number of bits per symbol

n = 2^m-1; k = 3; % Codeword length and message length

t = (n-k)/2; % Error-correction capability of the code

nw = 4; % Number of words to process

msgw = randi([0 n],nw*k,1); % Random k-symbol messages

hEnc = comm.RSEncoder(n,k);

hDec = comm.RSDecoder(n,k);

c = step(hEnc, msgw); % Encode the data.

noise = (1+randi([0 n-1],nw,n)).*randerr(nw,n,t); % t errors per codeword

noisy = noise';

noisy = noisy(:);

cnoisy = gf(c,m) + noisy; % Add noise to the code under gf(m) arithmetic.

[dc nerrs] = step(hDec, cnoisy.x); % Decode the noisy code.

% Check that the decoding worked correctly.

isequal(dc,msgw)

nerrs % Find out how many errors hDec corrected.

The array of noise values contains integers between 1 and 2^m, and the addition
operation c + noise takes place in the Galois field GF(2^m) because c is a Galois array
in GF(2^m).

The output from the example is below. The nonzero value of ans indicates that the
decoder was able to correct the corrupted codewords and recover the original message.

6-99

6 System Design

The values in the vector nerrs indicates that the decoder corrected t errors in each
codeword.

ans =

 1

nerrs =

 2

 2

 2

 2

Excessive Noise in Reed-Solomon Codewords

In the previous example, RS Encoder System object corrected all of the errors. However,
each Reed-Solomon code has a finite error-correction capability. If the noise is so great
that the corrupted codeword is too far in Hamming distance from the correct codeword,
that means either

• The corrupted codeword is close to a valid codeword other than the correct codeword.
The decoder returns the message that corresponds to the other codeword.

• The corrupted codeword is not close enough to any codeword for successful decoding.
This situation is called a decoding failure. The decoder removes the symbols in parity
positions from the corrupted codeword and returns the remaining symbols.

In both cases, the decoder returns the wrong message. However, you can tell when a
decoding failure occurs because RS Decoder System object also returns a value of -1 in
its second output.

To examine cases in which codewords are too noisy for successful decoding, change the
previous example so that the definition of noise is

noise = (1+randi([0 n-1],nw,n)).*randerr(nw,n,t+1); % t+1 errors/row

Create Shortened Reed-Solomon Codes

Every Reed-Solomon encoder uses a codeword length that equals 2m-1 for an integer
m. A shortened Reed-Solomon code is one in which the codeword length is not 2m-1. A
shortened [n,k] Reed-Solomon code implicitly uses an [n1,k1] encoder, where

• n1 = 2m - 1, where m is the number of bits per symbol
• k1 = k + (n1 - n)

6-100

 Error Detection and Correction

The RS Encoder System object supports shortened codes using the same syntaxes it
uses for nonshortened codes. You do not need to indicate explicitly that you want to use a
shortened code.

hEnc = comm.RSEncoder(7,5);

ordinarycode = step(hEnc,[1 1 1 1 1]');

hEnc = comm.RSEncoder(5,3);

shortenedcode = step(hEnc,[1 1 1]');

How the RS Encoder System Object Creates a Shortened Code

When creating a shortened code, the RS Encoder System object performs these steps:

• Pads each message by prepending zeros
• Encodes each padded message using a Reed-Solomon encoder having an allowable

codeword length and the desired error-correction capability
• Removes the extra zeros from the nonparity symbols of each codeword

The following example illustrates this process.

n = 12; k = 8; % Lengths for the shortened code

m = ceil(log2(n+1)); % Number of bits per symbol

msg = randi([0 2^m-1],3*k,1); % Random array of 3 k-symbol words

hEnc = comm.RSEncoder(n,k);

code = step(hEnc, msg); % Create a shortened code.

% Do the shortening manually, just to show how it works.

n_pad = 2^m-1; % Codeword length in the actual encoder

k_pad = k+(n_pad-n); % Messageword length in the actual encoder

hEnc = comm.RSEncoder(n_pad,k_pad);

mw = reshape(msg,k,[]); % Each column vector represents a messageword

msg_pad = [zeros(n_pad-n,3); mw]; % Prepend zeros to each word.

msg_pad = msg_pad(:);

code_pad = step(hEnc,msg_pad); % Encode padded words.

cw = reshape(code_pad,2^m-1,[]); % Each column vector represents a codeword

code_eqv = cw(n_pad-n+1:n_pad,:); % Remove extra zeros.

code_eqv = code_eqv(:);

ck = isequal(code_eqv,code); % Returns true (1).

Find a Generator Polynomial

To find a generator polynomial for a cyclic, BCH, or Reed-Solomon code, use the
cyclpoly, bchgenpoly, or rsgenpoly function, respectively. The commands

6-101

6 System Design

genpolyCyclic = cyclpoly(15,5) % 1+X^5+X^10

genpolyBCH = bchgenpoly(15,5) % x^10+x^8+x^5+x^4+x^2+x+1

genpolyRS = rsgenpoly(15,5)

find generator polynomials for block codes of different types. The output is below.
genpolyCyclic =

 1 0 0 0 0 1 0 0 0 0 1

genpolyBCH = GF(2) array.

Array elements =

 1 0 1 0 0 1 1 0 1 1 1

genpolyRS = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 1 4 8 10 12 9 4 2 12 2 7

The formats of these outputs vary:

• cyclpoly represents a generator polynomial using an integer row vector that lists
the polynomial's coefficients in order of ascending powers of the variable.

• bchgenpoly and rsgenpoly represent a generator polynomial using a Galois row
vector that lists the polynomial's coefficients in order of descending powers of the
variable.

• rsgenpoly uses coefficients in a Galois field other than the binary field GF(2). For
more information on the meaning of these coefficients, see “How Integers Correspond
to Galois Field Elements” on page 6-111 and “Polynomials over Galois Fields” on
page 6-130.

Nonuniqueness of Generator Polynomials

Some pairs of message length and codeword length do not uniquely determine the
generator polynomial. The syntaxes for functions in the example above also include
options for retrieving generator polynomials that satisfy certain constraints that you
specify. See the functions' reference pages for details about syntax options.
Algebraic Expression for Generator Polynomials

The generator polynomials produced by bchgenpoly and rsgenpoly have the form
(X - Ab)(X - Ab+1)...(X - Ab+2t-1), where A is a primitive element for an appropriate Galois

6-102

 Error Detection and Correction

field, and b and t are integers. See the functions' reference pages for more information
about this expression.

Reed Solomon Examples with Shortening, Puncturing, and Erasures

In this section, a representative example of Reed Solomon coding with shortening,
puncturing, and erasures is built with increasing complexity of error correction.

Encoder Example with Shortening and Puncturing

The following figure shows a representative example of a (7,3) Reed Solomon encoder
with shortening and puncturing.

Data

source

Add

zeros
Encode

Puncture

(1011)
Shorten

2-symbol

shortened

message

I1I2 0I1I2 0I1I2P1P2P3P4

I1I2P1P3P4 I1I2P1P2P3P4

3-symbol

message

RS Encoder with Shortening and Puncturing

(7, 3)

(6, 2)(5, 2)

In this figure, the message source outputs two information symbols, designated by
I1I2. (For a BCH example, the symbols are simply binary bits.) Because the code is a
shortened (7,3) code, a zero must be added ahead of the information symbols, yielding
a three-symbol message of 0I1I2. The modified message sequence is then RS encoded,
and the added information zero is subsequently removed, which yields a result of
I1I2P1P2P3P4. (In this example, the parity bits are at the end of the codeword.)

The puncturing operation is governed by the puncture vector, which, in this case, is 1011.
Within the puncture vector, a 1 means that the symbol is kept, and a 0 means that the

6-103

6 System Design

symbol is thrown away. In this example, the puncturing operation removes the second
parity symbol, yielding a final vector of I1I2P1P3P4.
Decoder Example with Shortening and Puncturing

The following figure shows how the RS encoder operates on a shortened and punctured
codeword.

Depuncture

(1011)

Add

zeros
Demod

DecodeTruncate

(5, 2)

I1I2P1P3P4 I1I2P1EP3P4

I1I2 DI1I2

(6, 2)

RS Decoder with Shortening and Puncturing

3-symbol

message

0I1I2P1EP3P4

(7, 3)2-symbol

shortened

message

This case corresponds to the encoder operations shown in the figure of the RS encoder
with shortening and puncturing. As shown in the preceding figure, the encoder receives
a (5,2) codeword, because it has been shortened from a (7,3) codeword by one symbol, and
one symbol has also been punctured.

As a first step, the decoder adds an erasure, designated by E, in the second parity
position of the codeword. This corresponds to the puncture vector 1011. Adding a zero
accounts for shortening, in the same way as shown in the preceding figure. The single
erasure does not exceed the erasure-correcting capability of the code, which can correct
four erasures. The decoding operation results in the three-symbol message DI1I2. The
first symbol is truncated, as in the preceding figure, yielding a final output of I1I2.
Encoder Example with Shortening, Puncturing, and Erasures

The following figure shows the decoder operating on the punctured, shortened codeword,
while also correcting erasures generated by the receiver.

6-104

 Error Detection and Correction

Depuncture

(1011)

Add

zeros
Erase

DecodeTruncate

I1EP1P3E I1EP1EP3E

0I1EP1EP3EI1I2 DI1I2

(6, 2)

RS Encoder with Shortening, Puncturing, and Erasures

(7, 3)3-symbol

message

2-symbol

shortened

message

I1I2P1P3P4

(5, 2)

01001

In this figure, demodulator receives the I1I2P1P3P4 vector that the encoder sent. The
demodulator declares that two of the five received symbols are unreliable enough to be
erased, such that symbols 2 and 5 are deemed to be erasures. The 01001 vector, provided
by an external source, indicates these erasures. Within the erasures vector, a 1 means
that the symbol is to be replaced with an erasure symbol, and a 0 means that the symbol
is passed unaltered.

The decoder blocks receive the codeword and the erasure vector, and perform the
erasures indicated by the vector 01001. Within the erasures vector, a 1 means that the
symbol is to be replaced with an erasure symbol, and a 0 means that the symbol is passed
unaltered. The resulting codeword vector is I1EP1P3E, where E is an erasure symbol.

The codeword is then depunctured, according to the puncture vector used in the encoding
operation (i.e., 1011). Thus, an erasure symbol is inserted between P1 and P3, yielding a
codeword vector of I1EP1EP3E.

Just prior to decoding, the addition of zeros at the beginning of the information vector
accounts for the shortening. The resulting vector is 0I1EP1EP3E, such that a (7,3)
codeword is sent to the Berlekamp algorithm.

6-105

6 System Design

This codeword is decoded, yielding a three-symbol message of DI1I2 (where D refers to a
dummy symbol). Finally, the removal of the D symbol from the message vector accounts
for the shortening and yields the original I1I2 vector.

For additional information, see the “Reed-Solomon Coding with Erasures, Punctures, and
Shortening” on page 9-20 example.

LDPC Codes

Low-Density Parity-Check (LDPC) codes are linear error control codes with:

• Sparse parity-check matrices
• Long block lengths that can attain performance near the Shannon limit (see LDPC

Encoder and LDPC Decoder)

Communications System Toolbox performs LDPC Coding using Simulink blocks and
MATLAB objects.

The decoding process is done iteratively. If the number of iterations is too small, the
algorithm may not converge. You may need to experiment with the number of iterations
to find an appropriate value for your model. For details on the decoding algorithm, see
Decoding Algorithm.

Unlike some other codecs, you cannot connect an LDPC decoder directly to the output of
an LDPC encoder, because the decoder requires log-likelihood ratios (LLR). Thus, you
may use a demodulator to compute the LLRs.

message
LDPC

Encoder

LDPC

Decoder
Modulator Channel Demodulator

Also, unlike other decoders, it is possible (although rare) that the output of the LDPC
decoder does not satisfy all parity checks.

Galois Field Computations

A Galois field is an algebraic field that has a finite number of members. Galois fields
having 2m members are used in error-control coding and are denoted GF(2m). This

6-106

 Error Detection and Correction

chapter describes how to work with fields that have 2m members, where m is an integer
between 1 and 16. The sections in this chapter are as follows.

• “Galois Field Terminology” on page 6-107
• “Representing Elements of Galois Fields” on page 6-108
• “Arithmetic in Galois Fields” on page 6-115
• “Logical Operations in Galois Fields” on page 6-120
• “Matrix Manipulation in Galois Fields” on page 6-122
• “Linear Algebra in Galois Fields” on page 6-123
• “Signal Processing Operations in Galois Fields” on page 6-126
• “Polynomials over Galois Fields” on page 6-130
• “Manipulating Galois Variables” on page 6-134
• “Speed and Nondefault Primitive Polynomials” on page 6-136
• “Selected Bibliography for Galois Fields” on page 6-137

If you need to use Galois fields having an odd number of elements, see “Galois Fields of
Odd Characteristic” on page 6-137.

For more details about specific functions that process arrays of Galois field elements, see
the online reference pages in the documentation for MATLAB or for Communications
System Toolbox software.

Note: Please note that the Galois field objects do not support the copy method.

MATLAB functions whose generalization to Galois fields is straightforward to describe do
not have reference pages in this manual because the entries would be identical to those
in the MATLAB documentation.

Galois Field Terminology

The discussion of Galois fields in this document uses a few terms that are not used
consistently in the literature. The definitions adopted here appear in van Lint [4]:

• A primitive element of GF(2m) is a cyclic generator of the group of nonzero elements of
GF(2m). This means that every nonzero element of the field can be expressed as the
primitive element raised to some integer power.

6-107

6 System Design

• A primitive polynomial for GF(2m) is the minimal polynomial of some primitive
element of GF(2m). It is the binary-coefficient polynomial of smallest nonzero degree
having a certain primitive element as a root in GF(2m). As a consequence, a primitive
polynomial has degree m and is irreducible.

The definitions imply that a primitive element is a root of a corresponding primitive
polynomial.

Representing Elements of Galois Fields

• “Section Overview” on page 6-108
• “Creating a Galois Array” on page 6-108
• “Example: Creating Galois Field Variables” on page 6-109
• “Example: Representing Elements of GF(8)” on page 6-110
• “How Integers Correspond to Galois Field Elements” on page 6-111
• “Example: Representing a Primitive Element” on page 6-111
• “Primitive Polynomials and Element Representations” on page 6-112

Section Overview

This section describes how to create a Galois array, which is a MATLAB expression
that represents the elements of a Galois field. This section also describes how MATLAB
technical computing software interprets the numbers that you use in the representation,
and includes several examples.

Creating a Galois Array

To begin working with data from a Galois field GF(2^m), you must set the context by
associating the data with crucial information about the field. The gf function performs
this association and creates a Galois array in MATLAB. This function accepts as inputs

• The Galois field data, x, which is a MATLAB array whose elements are integers
between 0 and 2^m-1.

• (Optional) An integer, m, that indicates x is in the field GF(2^m). Valid values of m are
between 1 and 16. The default is 1, which means that the field is GF(2).

• (Optional) A positive integer that indicates which primitive polynomial for GF(2^m)
you are using in the representations in x. If you omit this input argument, gf uses a
default primitive polynomial for GF(2^m). For information about this argument, see
“Specifying the Primitive Polynomial” on page 6-112.

6-108

 Error Detection and Correction

The output of the gf function is a variable that MATLAB recognizes as a Galois field
array, rather than an array of integers. As a result, when you manipulate the variable,
MATLAB works within the Galois field you have specified. For example, if you apply the
log function to a Galois array, MATLAB computes the logarithm in the Galois field and
not in the field of real or complex numbers.

When MATLAB Implicitly Creates a Galois Array

Some operations on Galois arrays require multiple arguments. If you specify one
argument that is a Galois array and another that is an ordinary MATLAB array,
MATLAB interprets both as Galois arrays in the same field. It implicitly invokes the
gf function on the ordinary MATLAB array. This implicit invocation simplifies your
syntax because you can omit some references to the gf function. For an example of the
simplification, see “Example: Addition and Subtraction” on page 6-116.

Example: Creating Galois Field Variables

The code below creates a row vector whose entries are in the field GF(4), and then adds
the row to itself.

x = 0:3; % A row vector containing integers

m = 2; % Work in the field GF(2^2), or, GF(4).

a = gf(x,m) % Create a Galois array in GF(2^m).

b = a + a % Add a to itself, creating b.

The output is

a = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 0 1 2 3

b = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 0 0 0 0

6-109

6 System Design

The output shows the values of the Galois arrays named a and b. Each output section
indicates

• The field containing the variable, namely, GF(2^2) = GF(4).
• The primitive polynomial for the field. In this case, it is the toolbox's default primitive

polynomial for GF(4).
• The array of Galois field values that the variable contains. In particular, the array

elements in a are exactly the elements of the vector x, and the array elements in b are
four instances of the zero element in GF(4).

The command that creates b shows how, having defined the variable a as a Galois
array, you can add a to itself by using the ordinary + operator. MATLAB performs the
vectorized addition operation in the field GF(4). The output shows that

• Compared to a, b is in the same field and uses the same primitive polynomial. It
is not necessary to indicate the field when defining the sum, b, because MATLAB
remembers that information from the definition of the addends, a.

• The array elements of b are zeros because the sum of any value with itself, in a Galois
field of characteristic two, is zero. This result differs from the sum x + x, which
represents an addition operation in the infinite field of integers.

Example: Representing Elements of GF(8)

To illustrate what the array elements in a Galois array mean, the table below lists the
elements of the field GF(8) as integers and as polynomials in a primitive element, A. The
table should help you interpret a Galois array like

gf8 = gf([0:7],3); % Galois vector in GF(2^3)

Integer Representation Binary Representation Element of GF(8)

0 000 0
1 001 1
2 010 A
3 011 A + 1
4 100 A2

5 101 A2 + 1
6 110 A2 + A

6-110

 Error Detection and Correction

Integer Representation Binary Representation Element of GF(8)

7 111 A2 + A + 1

How Integers Correspond to Galois Field Elements

Building on the GF(8) example above, this section explains the interpretation of array
elements in a Galois array in greater generality. The field GF(2^m) has 2^m distinct
elements, which this toolbox labels as 0, 1, 2,..., 2^m-1. These integer labels correspond
to elements of the Galois field via a polynomial expression involving a primitive
element of the field. More specifically, each integer between 0 and 2^m-1 has a binary
representation in m bits. Using the bits in the binary representation as coefficients in
a polynomial, where the least significant bit is the constant term, leads to a binary
polynomial whose order is at most m-1. Evaluating the binary polynomial at a primitive
element of GF(2^m) leads to an element of the field.

Conversely, any element of GF(2^m) can be expressed as a binary polynomial of order at
most m-1, evaluated at a primitive element of the field. The m-tuple of coefficients of the
polynomial corresponds to the binary representation of an integer between 0 and 2^m.

Below is a symbolic illustration of the correspondence of an integer X, representable
in binary form, with a Galois field element. Each bk is either zero or one, while A is a
primitive element.

X b b b b

b A b A b A b

m
m

m
m

= ◊ + + ◊ + ◊ +

´ ◊ + + ◊ + ◊ +

-

-

-

-

1

1

2 1 0

1
1

2
2

1 0

2 4 2L

L

Example: Representing a Primitive Element

The code below defines a variable alph that represents a primitive element of the field
GF(24).

m = 4; % Or choose any positive integer value of m.

alph = gf(2,m) % Primitive element in GF(2^m)

The output is

alph = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

6-111

6 System Design

Array elements =

 2

The Galois array alph represents a primitive element because of the correspondence
among

• The integer 2, specified in the gf syntax
• The binary representation of 2, which is 10 (or 0010 using four bits)
• The polynomial A + 0, where A is a primitive element in this field (or 0A3 + 0A2 + A +

0 using the four lowest powers of A)

Primitive Polynomials and Element Representations

This section builds on the discussion in “Creating a Galois Array” on page 6-108 by
describing how to specify your own primitive polynomial when you create a Galois array.
The topics are

If you perform many computations using a nondefault primitive polynomial, see “Speed
and Nondefault Primitive Polynomials” on page 6-136.

Specifying the Primitive Polynomial

The discussion in “How Integers Correspond to Galois Field Elements” on page 6-111
refers to a primitive element, which is a root of a primitive polynomial of the field. When
you use the gf function to create a Galois array, the function interprets the integers in
the array with respect to a specific default primitive polynomial for that field, unless
you explicitly provide a different primitive polynomial. A list of the default primitive
polynomials is on the reference page for the gf function.

To specify your own primitive polynomial when creating a Galois array, use a syntax like

c = gf(5,4,25) % 25 indicates the primitive polynomial for GF(16).

instead of

c1= gf(5,4); % Use default primitive polynomial for GF(16).

The extra input argument, 25 in this case, specifies the primitive polynomial for the field
GF(2^m) in a way similar to the representation described in “How Integers Correspond

6-112

 Error Detection and Correction

to Galois Field Elements” on page 6-111. In this case, the integer 25 corresponds to a
binary representation of 11001, which in turn corresponds to the polynomial D4 + D3 + 1.

Note: When you specify the primitive polynomial, the input argument must have a
binary representation using exactly m+1 bits, not including unnecessary leading zeros. In
other words, a primitive polynomial for GF(2^m) always has order m.

When you use an input argument to specify the primitive polynomial, the output reflects
your choice by showing the integer value as well as the polynomial representation.

d = gf([1 2 3],4,25)

d = GF(2^4) array. Primitive polynomial = D^4+D^3+1 (25 decimal)

Array elements =

 1 2 3

Note: After you have defined a Galois array, you cannot change the primitive polynomial
with respect to which MATLAB interprets the array elements.

Finding Primitive Polynomials

You can use the primpoly function to find primitive polynomials for GF(2^m) and the
isprimitive function to determine whether a polynomial is primitive for GF(2^m). The
code below illustrates.

m = 4;

defaultprimpoly = primpoly(m) % Default primitive poly for GF(16)

allprimpolys = primpoly(m,'all') % All primitive polys for GF(16)

i1 = isprimitive(25) % Can 25 be the prim_poly input in gf(...)?

i2 = isprimitive(21) % Can 21 be the prim_poly input in gf(...)?

The output is below.

Primitive polynomial(s) =

D^4+D^1+1

defaultprimpoly =

6-113

6 System Design

 19

Primitive polynomial(s) =

D^4+D^1+1

D^4+D^3+1

allprimpolys =

 19

 25

i1 =

 1

i2 =

 0

Effect of Nondefault Primitive Polynomials on Numerical Results

Most fields offer multiple choices for the primitive polynomial that helps define the
representation of members of the field. When you use the gf function, changing the
primitive polynomial changes the interpretation of the array elements and, in turn,
changes the results of some subsequent operations on the Galois array. For example,
exponentiation of a primitive element makes it easy to see how the primitive polynomial
affects the representations of field elements.

a11 = gf(2,3); % Use default primitive polynomial of 11.

a13 = gf(2,3,13); % Use D^3+D^2+1 as the primitive polynomial.

z = a13.^3 + a13.^2 + 1 % 0 because a13 satisfies the equation

nz = a11.^3 + a11.^2 + 1 % Nonzero. a11 does not satisfy equation.

The output below shows that when the primitive polynomial has integer representation
13, the Galois array satisfies a certain equation. By contrast, when the primitive
polynomial has integer representation 11, the Galois array fails to satisfy the equation.

z = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

Array elements =

 0

6-114

 Error Detection and Correction

nz = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 6

The output when you try this example might also include a warning about lookup
tables. This is normal if you did not use the gftable function to optimize computations
involving a nondefault primitive polynomial of 13.

Arithmetic in Galois Fields

• “Section Overview” on page 6-115
• “Example: Addition and Subtraction” on page 6-116
• “Example: Multiplication” on page 6-117
• “Example: Division” on page 6-118
• “Example: Exponentiation” on page 6-119
• “Example: Elementwise Logarithm” on page 6-119

Section Overview

You can perform arithmetic operations on Galois arrays by using familiar MATLAB
operators, listed in the table below. Whenever you operate on a pair of Galois arrays,
both arrays must be in the same Galois field.

Operation Operator

Addition +

Subtraction -

Elementwise multiplication .*

Matrix multiplication *

Elementwise left division ./

Elementwise right division .\

Matrix left division /

Matrix right division \

Elementwise exponentiation .^

6-115

6 System Design

Operation Operator

Elementwise logarithm log()

Exponentiation of a square Galois matrix
by a scalar integer

^

For multiplication and division of polynomials over a Galois field, see “Addition and
Subtraction of Polynomials” on page 6-130.
Example: Addition and Subtraction

The code below adds two Galois arrays to create an addition table for GF(8). Addition
uses the ordinary + operator. The code below also shows how to index into the array
addtb to find the result of adding 1 to the elements of GF(8).

m = 3;

e = repmat([0:2^m-1],2^m,1);

f = gf(e,m); % Create a Galois array.

addtb = f + f' % Add f to its own matrix transpose.

addone = addtb(2,:); % Assign 2nd row to the Galois vector addone.

The output is below.

addtb = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 0 1 2 3 4 5 6 7

 1 0 3 2 5 4 7 6

 2 3 0 1 6 7 4 5

 3 2 1 0 7 6 5 4

 4 5 6 7 0 1 2 3

 5 4 7 6 1 0 3 2

 6 7 4 5 2 3 0 1

 7 6 5 4 3 2 1 0

As an example of reading this addition table, the (7,4) entry in the addtb array shows
that gf(6,3) plus gf(3,3) equals gf(5,3). Equivalently, the element A2+A plus
the element A+1 equals the element A2+1. The equivalence arises from the binary
representation of 6 as 110, 3 as 011, and 5 as 101.

The subtraction table, which you can obtain by replacing + by -, is the same as
addtb. This is because subtraction and addition are identical operations in a field of

6-116

 Error Detection and Correction

characteristic two. In fact, the zeros along the main diagonal of addtb illustrate this fact
for GF(8).

Simplifying the Syntax

The code below illustrates scalar expansion and the implicit creation of a Galois array
from an ordinary MATLAB array. The Galois arrays h and h1 are identical, but the
creation of h uses a simpler syntax.

g = gf(ones(2,3),4); % Create a Galois array explicitly.

h = g + 5; % Add gf(5,4) to each element of g.

h1 = g + gf(5*ones(2,3),4) % Same as h.

The output is below.

h1 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 4 4 4

 4 4 4

Notice that 1+5 is reported as 4 in the Galois field. This is true because the 5 represents
the polynomial expression A2+1, and 1+(A2+1) in GF(16) is A2. Furthermore, the integer
that represents the polynomial expression A2 is 4.

Example: Multiplication

The example below multiplies individual elements in a Galois array using the .*
operator. It then performs matrix multiplication using the * operator. The elementwise
multiplication produces an array whose size matches that of the inputs. By contrast, the
matrix multiplication produces a Galois scalar because it is the matrix product of a row
vector with a column vector.

m = 5;

row1 = gf([1:2:9],m); row2 = gf([2:2:10],m);

col = row2'; % Transpose to create a column array.

ep = row1 .* row2; % Elementwise product.

mp = row1 * col; % Matrix product.

Multiplication Table for GF(8)

As another example, the code below multiplies two Galois vectors using matrix
multiplication. The result is a multiplication table for GF(8).

6-117

6 System Design

m = 3;

els = gf([0:2^m-1]',m);

multb = els * els' % Multiply els by its own matrix transpose.

The output is below.

multb = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 0 0 0 0 0 0 0 0

 0 1 2 3 4 5 6 7

 0 2 4 6 3 1 7 5

 0 3 6 5 7 4 1 2

 0 4 3 7 6 2 5 1

 0 5 1 4 2 7 3 6

 0 6 7 1 5 3 2 4

 0 7 5 2 1 6 4 3

Example: Division

The examples below illustrate the four division operators in a Galois field by computing
multiplicative inverses of individual elements and of an array. You can also compute
inverses using inv or using exponentiation by -1.

Elementwise Division

This example divides 1 by each of the individual elements in a Galois array using the ./
and .\ operators. These two operators differ only in their sequence of input arguments.
Each quotient vector lists the multiplicative inverses of the nonzero elements of the
field. In this example, MATLAB expands the scalar 1 to the size of nz before computing;
alternatively, you can use as arguments two arrays of the same size.

m = 5;

nz = gf([1:2^m-1],m); % Nonzero elements of the field

inv1 = 1 ./ nz; % Divide 1 by each element.

inv2 = nz .\ 1; % Obtain same result using .\ operator.

Matrix Division

This example divides the identity array by the square Galois array mat using the / and
\ operators. Each quotient matrix is the multiplicative inverse of mat. Notice how the
transpose operator (') appears in the equivalent operation using \. For square matrices,
the sequence of transpose operations is unnecessary, but for nonsquare matrices, it is
necessary.

6-118

 Error Detection and Correction

m = 5;

mat = gf([1 2 3; 4 5 6; 7 8 9],m);

minv1 = eye(3) / mat; % Compute matrix inverse.

minv2 = (mat' \ eye(3)')'; % Obtain same result using \ operator.

Example: Exponentiation

The examples below illustrate how to compute integer powers of a Galois array. To
perform matrix exponentiation on a Galois array, you must use a square Galois array as
the base and an ordinary (not Galois) integer scalar as the exponent.

Elementwise Exponentiation

This example computes powers of a primitive element, A, of a Galois field. It then uses
these separately computed powers to evaluate the default primitive polynomial at A.
The answer of zero shows that A is a root of the primitive polynomial. The .^ operator
exponentiates each array element independently.

m = 3;

av = gf(2*ones(1,m+1),m); % Row containing primitive element

expa = av .^ [0:m]; % Raise element to different powers.

evp = expa(4)+expa(2)+expa(1) % Evaluate D^3 + D + 1.

The output is below.

evp = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

 0

Matrix Exponentiation

This example computes the inverse of a square matrix by raising the matrix to the power
-1. It also raises the square matrix to the powers 2 and -2.

m = 5;

mat = gf([1 2 3; 4 5 6; 7 8 9],m);

minvs = mat ^ (-1); % Matrix inverse

matsq = mat^2; % Same as mat * mat

matinvssq = mat^(-2); % Same as minvs * minvs

Example: Elementwise Logarithm

The code below computes the logarithm of the elements of a Galois array. The output
indicates how to express each nonzero element of GF(8) as a power of the primitive
element. The logarithm of the zero element of the field is undefined.

6-119

6 System Design

gf8_nonzero = gf([1:7],3); % Vector of nonzero elements of GF(8)

expformat = log(gf8_nonzero) % Logarithm of each element

The output is

expformat =

 0 1 3 2 6 4 5

As an example of how to interpret the output, consider the last entry in each vector in
this example. You can infer that the element gf(7,3) in GF(8) can be expressed as
either

• A5, using the last element of expformat
• A2+A+1, using the binary representation of 7 as 111. See “Example: Representing

Elements of GF(8)” on page 6-110 for more details.

Logical Operations in Galois Fields

• “Section Overview” on page 6-120
• “Testing for Equality” on page 6-120
• “Testing for Nonzero Values” on page 6-121

Section Overview

You can apply logical tests to Galois arrays and obtain a logical array. Some important
types of tests are testing for the equality of two Galois arrays and testing for nonzero
values in a Galois array.
Testing for Equality

To compare corresponding elements of two Galois arrays that have the same size, use
the operators == and ~=. The result is a logical array, each element of which indicates
the truth or falsity of the corresponding elementwise comparison. If you use the same
operators to compare a scalar with a Galois array, MATLAB technical computing
software compares the scalar with each element of the array, producing a logical array of
the same size.

m = 5; r1 = gf([1:3],m); r2 = 1 ./ r1;

lg1 = (r1 .* r2 == [1 1 1]) % Does each element equal one?

lg2 = (r1 .* r2 == 1) % Same as above, using scalar expansion

lg3 = (r1 ~= r2) % Does each element differ from its inverse?

The output is below.

6-120

 Error Detection and Correction

lg1 =

 1 1 1

lg2 =

 1 1 1

lg3 =

 0 1 1

Comparison of isequal and ==

To compare entire arrays and obtain a logical scalar result rather than a logical
array, use the built-in isequal function. However, isequal uses strict rules for its
comparison, and returns a value of 0 (false) if you compare

• A Galois array with an ordinary MATLAB array, even if the values of the underlying
array elements match

• A scalar with a nonscalar array, even if all elements in the array match the scalar

The example below illustrates this difference between == and isequal.

m = 5; r1 = gf([1:3],m); r2 = 1 ./ r1;

lg4 = isequal(r1 .* r2, [1 1 1]); % False

lg5 = isequal(r1 .* r2, gf(1,m)); % False

lg6 = isequal(r1 .* r2, gf([1 1 1],m)); % True

Testing for Nonzero Values

To test for nonzero values in a Galois vector, or in the columns of a Galois array that has
more than one row, use the any or all function. These two functions behave just like the
ordinary MATLAB functions any and all, except that they consider only the underlying
array elements while ignoring information about which Galois field the elements are in.
Examples are below.

m = 3; randels = gf(randi([0 2^m-1],6,1),m);

if all(randels) % If all elements are invertible

 invels = randels .\ 1; % Compute inverses of elements.

else

 disp('At least one element was not invertible.');

end

6-121

6 System Design

alph = gf(2,4);

poly = 1 + alph + alph^3;

if any(poly) % If poly contains a nonzero value

 disp('alph is not a root of 1 + D + D^3.');

end

code = [0:4 4 0; 3:7 4 5]

if all(code,2) % Is each row entirely nonzero?

 disp('Both codewords are entirely nonzero.');

else

 disp('At least one codeword contains a zero.');

end

Matrix Manipulation in Galois Fields

• “Basic Manipulations of Galois Arrays” on page 6-122
• “Basic Information About Galois Arrays” on page 6-123

Basic Manipulations of Galois Arrays

Basic array operations on Galois arrays are in the table below. The functionality of these
operations is analogous to the MATLAB operations having the same syntax.

Operation Syntax

Index into array, possibly using colon
operator instead of a vector of explicit
indices

a(vector) or a(vector,vector1),
where vector and/or vector1 can be ":"
instead of a vector

Transpose array a'

Concatenate matrices [a,b] or [a;b]
Create array having specified diagonal
elements

diag(vector) or diag(vector,k)

Extract diagonal elements diag(a) or diag(a,k)
Extract lower triangular part tril(a) or tril(a,k)
Extract upper triangular part triu(a) or triu(a,k)
Change shape of array reshape(a,k1,k2)

The code below uses some of these syntaxes.

m = 4; a = gf([0:15],m);

a(1:2) = [13 13]; % Replace some elements of the vector a.

6-122

 Error Detection and Correction

b = reshape(a,2,8); % Create 2-by-8 matrix.

c = [b([1 1 2],1:3); a(4:6)]; % Create 4-by-3 matrix.

d = [c, a(1:4)']; % Create 4-by-4 matrix.

dvec = diag(d); % Extract main diagonal of d.

dmat = diag(a(5:9)); % Create 5-by-5 diagonal matrix

dtril = tril(d); % Extract upper and lower triangular

dtriu = triu(d); % parts of d.

Basic Information About Galois Arrays

You can determine the length of a Galois vector or the size of any Galois array using
the length and size functions. The functionality for Galois arrays is analogous to that
of the MATLAB operations on ordinary arrays, except that the output arguments from
size and length are always integers, not Galois arrays. The code below illustrates the
use of these functions.

m = 4; e = gf([0:5],m); f = reshape(e,2,3);

lne = length(e); % Vector length of e

szf = size(f); % Size of f, returned as a two-element row

[nr,nc] = size(f); % Size of f, returned as two scalars

nc2 = size(f,2); % Another way to compute number of columns

Positions of Nonzero Elements

Another type of information you might want to determine from a Galois array are the
positions of nonzero elements. For an ordinary MATLAB array, you might use the find
function. However, for a Galois array, you should use find in conjunction with the ~=
operator, as illustrated.

x = [0 1 2 1 0 2]; m = 2; g = gf(x,m);

nzx = find(x); % Find nonzero values in the ordinary array x.

nzg = find(g~=0); % Find nonzero values in the Galois array g.

Linear Algebra in Galois Fields

• “Inverting Matrices and Computing Determinants” on page 6-123
• “Computing Ranks” on page 6-124
• “Factoring Square Matrices” on page 6-125
• “Solving Linear Equations” on page 6-125

Inverting Matrices and Computing Determinants

To invert a square Galois array, use the inv function. Related is the det function,
which computes the determinant of a Galois array. Both inv and det behave like their

6-123

6 System Design

ordinary MATLAB counterparts, except that they perform computations in the Galois
field instead of in the field of complex numbers.

Note: A Galois array is singular if and only if its determinant is exactly zero. It is not
necessary to consider roundoff errors, as in the case of real and complex arrays.

The code below illustrates matrix inversion and determinant computation.

m = 4;

randommatrix = gf(randi([0 2^m-1],4,4),m);

gfid = gf(eye(4),m);

if det(randommatrix) ~= 0

 invmatrix = inv(randommatrix);

 check1 = invmatrix * randommatrix;

 check2 = randommatrix * invmatrix;

 if (isequal(check1,gfid) & isequal(check2,gfid))

 disp('inv found the correct matrix inverse.');

 end

else

 disp('The matrix is not invertible.');

end

The output from this example is either of these two messages, depending on whether the
randomly generated matrix is nonsingular or singular.

inv found the correct matrix inverse.

The matrix is not invertible.

Computing Ranks

To compute the rank of a Galois array, use the rank function. It behaves like the
ordinary MATLAB rank function when given exactly one input argument. The example
below illustrates how to find the rank of square and nonsquare Galois arrays.

m = 3;

asquare = gf([4 7 6; 4 6 5; 0 6 1],m);

r1 = rank(asquare);

anonsquare = gf([4 7 6 3; 4 6 5 1; 0 6 1 1],m);

r2 = rank(anonsquare);

[r1 r2]

The output is

6-124

 Error Detection and Correction

ans =

 2 3

The values of r1 and r2 indicate that asquare has less than full rank but that
anonsquare has full rank.

Factoring Square Matrices

To express a square Galois array (or a permutation of it) as the product of a lower
triangular Galois array and an upper triangular Galois array, use the lu function.
This function accepts one input argument and produces exactly two or three output
arguments. It behaves like the ordinary MATLAB lu function when given the same
syntax. The example below illustrates how to factor using lu.

tofactor = gf([6 5 7 6; 5 6 2 5; 0 1 7 7; 1 0 5 1],3);

[L,U]=lu(tofactor); % lu with two output arguments

c1 = isequal(L*U, tofactor) % True

tofactor2 = gf([1 2 3 4;1 2 3 0;2 5 2 1; 0 5 0 0],3);

[L2,U2,P] = lu(tofactor2); % lu with three output arguments

c2 = isequal(L2*U2, P*tofactor2) % True

Solving Linear Equations

To find a particular solution of a linear equation in a Galois field, use the \ or / operator
on Galois arrays. The table below indicates the equation that each operator addresses,
assuming that A and B are previously defined Galois arrays.

Operator Linear Equation Syntax Equivalent Syntax Using \

Backslash (\) A * x = B x = A \ B Not applicable
Slash (/) x * A = B x = B / A x = (A'\B')'

The results of the syntax in the table depend on characteristics of the Galois array A:

• If A is square and nonsingular, the output x is the unique solution to the linear
equation.

• If A is square and singular, the syntax in the table produces an error.
• If A is not square, MATLAB attempts to find a particular solution. If A'*A or A*A'

is a singular array, or if A is a matrix, where the rows outnumber the columns, that
represents an overdetermined system, the attempt might fail.

6-125

6 System Design

Note: An error message does not necessarily indicate that the linear equation has no
solution. You might be able to find a solution by rephrasing the problem. For example,
gf([1 2; 0 0],3) \ gf([1; 0],3) produces an error but the mathematically
equivalent gf([1 2],3) \ gf([1],3) does not. The first syntax fails because gf([1
2; 0 0],3) is a singular square matrix.

Example: Solving Linear Equations

The examples below illustrate how to find particular solutions of linear equations over a
Galois field.

m = 4;

A = gf(magic(3),m); % Square nonsingular matrix

Awide=[A, 2*A(:,3)]; % 3-by-4 matrix with redundancy on the right

Atall = Awide'; % 4-by-3 matrix with redundancy at the bottom

B = gf([0:2]',m);

C = [B; 2*B(3)];

D = [B; B(3)+1];

thesolution = A \ B; % Solution of A * x = B

thesolution2 = B' / A; % Solution of x * A = B'

ck1 = all(A * thesolution == B) % Check validity of solutions.

ck2 = all(thesolution2 * A == B')

% Awide * x = B has infinitely many solutions. Find one.

onesolution = Awide \ B;

ck3 = all(Awide * onesolution == B) % Check validity of solution.

% Atall * x = C has a solution.

asolution = Atall \ C;

ck4 = all(Atall * asolution == C) % Check validity of solution.

% Atall * x = D has no solution.

notasolution = Atall \ D;

ck5 = all(Atall * notasolution == D) % It is not a valid solution.

The output from this example indicates that the validity checks are all true (1), except for
ck5, which is false (0).

Signal Processing Operations in Galois Fields

• “Section Overview” on page 6-127
• “Filtering” on page 6-127
• “Convolution” on page 6-128
• “Discrete Fourier Transform” on page 6-129

6-126

 Error Detection and Correction

Section Overview

You can perform some signal-processing operations on Galois arrays, such as filtering,
convolution, and the discrete Fourier transform.

This section describes how to perform these operations.

Other information about the corresponding operations for ordinary real vectors is in the
Signal Processing Toolbox™ documentation.

Filtering

To filter a Galois vector, use the filter function. It behaves like the ordinary MATLAB
filter function when given exactly three input arguments.

The code and diagram below give the impulse response of a particular filter over GF(2).

m = 1; % Work in GF(2).

b = gf([1 0 0 1 0 1 0 1],m); % Numerator

a = gf([1 0 1 1],m); % Denominator

x = gf([1,zeros(1,19)],m);

y = filter(b,a,x); % Filter x.

figure; stem(y.x); % Create stem plot.

axis([0 20 -.1 1.1])

6-127

6 System Design

Convolution

Communications System Toolbox software offers two equivalent ways to convolve a pair
of Galois vectors:

• Use the conv function, as described in “Multiplication and Division of Polynomials”
on page 6-131. This works because convolving two vectors is equivalent to
multiplying the two polynomials whose coefficients are the entries of the vectors.

• Use the convmtx function to compute the convolution matrix of one of the vectors,
and then multiply that matrix by the other vector. This works because convolving
two vectors is equivalent to filtering one of the vectors by the other. The equivalence
permits the representation of a digital filter as a convolution matrix, which you can
then multiply by any Galois vector of appropriate length.

Tip If you need to convolve large Galois vectors, multiplying by the convolution matrix
might be faster than using conv.

6-128

 Error Detection and Correction

Example

Computes the convolution matrix for a vector b in GF(4). Represent the numerator
coefficients for a digital filter, and then illustrate the two equivalent ways to convolve b
with x over the Galois field.

m = 2; b = gf([1 2 3]',m);

n = 3; x = gf(randi([0 2^m-1],n,1),m);

C = convmtx(b,n); % Compute convolution matrix.

v1 = conv(b,x); % Use conv to convolve b with x

v2 = C*x; % Use C to convolve b with x.

Discrete Fourier Transform

The discrete Fourier transform is an important tool in digital signal processing. This
toolbox offers these tools to help you process discrete Fourier transforms:

• fft, which transforms a Galois vector
• ifft, which inverts the discrete Fourier transform on a Galois vector
• dftmtx, which returns a Galois array that you can use to perform or invert the

discrete Fourier transform on a Galois vector

In all cases, the vector being transformed must be a Galois vector of length 2m-1 in the
field GF(2m). The following example illustrates the use of these functions. You can check,
using the isequal function, that y equals y1, z equals z1, and z equals x.

m = 4;

x = gf(randi([0 2^m-1],2^m-1,1),m); % A vector to transform

alph = gf(2,m);

dm = dftmtx(alph);

idm = dftmtx(1/alph);

y = dm*x; % Transform x using the result of dftmtx.

y1 = fft(x); % Transform x using fft.

z = idm*y; % Recover x using the result of dftmtx(1/alph).

z1 = ifft(y1); % Recover x using ifft.

Tip If you have many vectors that you want to transform (in the same field), it might be
faster to use dftmtx once and matrix multiplication many times, instead of using fft
many times.

6-129

6 System Design

Polynomials over Galois Fields

• “Section Overview” on page 6-130
• “Addition and Subtraction of Polynomials” on page 6-130
• “Multiplication and Division of Polynomials” on page 6-131
• “Evaluating Polynomials” on page 6-131
• “Roots of Polynomials” on page 6-132
• “Roots of Binary Polynomials” on page 6-132
• “Minimal Polynomials” on page 6-133

Section Overview

You can use Galois vectors to represent polynomials in an indeterminate quantity x, with
coefficients in a Galois field. Form the representation by listing the coefficients of the
polynomial in a vector in order of descending powers of x. For example, the vector

gf([2 1 0 3],4)

represents the polynomial Ax3 + 1x2 + 0x + (A+1), where

• A is a primitive element in the field GF(24).
• x is the indeterminate quantity in the polynomial.

You can then use such a Galois vector to perform arithmetic with, evaluate, and find
roots of polynomials. You can also find minimal polynomials of elements of a Galois field.

Addition and Subtraction of Polynomials

To add and subtract polynomials, use + and - on equal-length Galois vectors that
represent the polynomials. If one polynomial has lower degree than the other, you must
pad the shorter vector with zeros at the beginning so the two vectors have the same
length. The example below shows how to add a degree-one and a degree-two polynomial.

lin = gf([4 2],3); % A^2 x + A, which is linear in x

linpadded = gf([0 4 2],3); % The same polynomial, zero-padded

quadr = gf([1 4 2],3); % x^2 + A^2 x + A, which is quadratic in x

% Can't do lin + quadr because they have different vector lengths.

sumpoly = [0, lin] + quadr; % Sum of the two polynomials

sumpoly2 = linpadded + quadr; % The same sum

6-130

 Error Detection and Correction

Multiplication and Division of Polynomials

To multiply and divide polynomials, use conv and deconv on Galois vectors that
represent the polynomials. Multiplication and division of polynomials is equivalent to
convolution and deconvolution of vectors. The deconv function returns the quotient of
the two polynomials as well as the remainder polynomial. Examples are below.

m = 4;

apoly = gf([4 5 3],m); % A^2 x^2 + (A^2 + 1) x + (A + 1)

bpoly = gf([1 1],m); % x + 1

xpoly = gf([1 0],m); % x

% Product is A^2 x^3 + x^2 + (A^2 + A) x + (A + 1).

cpoly = conv(apoly,bpoly);

[a2,remd] = deconv(cpoly,bpoly); % a2==apoly. remd is zero.

[otherpol,remd2] = deconv(cpoly,xpoly); % remd is nonzero.

The multiplication and division operators in “Arithmetic in Galois Fields” on page 6-115
multiply elements or matrices, not polynomials.
Evaluating Polynomials

To evaluate a polynomial at an element of a Galois field, use polyval. It behaves like
the ordinary MATLAB polyval function when given exactly two input arguments. The
example below evaluates a polynomial at several elements in a field and checks the
results using .^ and .* in the field.

m = 4;

apoly = gf([4 5 3],m); % A^2 x^2 + (A^2 + 1) x + (A + 1)

x0 = gf([0 1 2],m); % Points at which to evaluate the polynomial

y = polyval(apoly,x0)

a = gf(2,m); % Primitive element of the field, corresponding to A.

y2 = a.^2.*x0.^2 + (a.^2+1).*x0 + (a+1) % Check the result.

The output is below.

y = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 3 2 10

y2 = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

6-131

6 System Design

Array elements =

 3 2 10

The first element of y evaluates the polynomial at 0 and, therefore, returns the
polynomial's constant term of 3.

Roots of Polynomials

To find the roots of a polynomial in a Galois field, use the roots function on a Galois
vector that represents the polynomial. This function finds roots that are in the same field
that the Galois vector is in. The number of times an entry appears in the output vector
from roots is exactly its multiplicity as a root of the polynomial.

Note: If the Galois vector is in GF(2m), the polynomial it represents might have
additional roots in some extension field GF((2m)k). However, roots does not find those
additional roots or indicate their existence.

The examples below find roots of cubic polynomials in GF(8).

p = 3; m = 2;

field = gftuple([-1:p^m-2]',m,p); % List of all elements of GF(9)

% Use default primitive polynomial here.

polynomial = [1 0 1 1]; % 1 + x^2 + x^3

rts =gfroots(polynomial,m,p) % Find roots in exponential format

% Check that each one is actually a root.

for ii = 1:3

 root = rts(ii);

 rootsquared = gfmul(root,root,field);

 rootcubed = gfmul(root,rootsquared,field);

 answer(ii)= gfadd(gfadd(0,rootsquared,field),rootcubed,field);

 % Recall that 1 is really alpha to the zero power.

 % If answer = -Inf, then the variable root represents

 % a root of the polynomial.

end

answer

Roots of Binary Polynomials

In the special case of a polynomial having binary coefficients, it is also easy to find roots
that exist in an extension field. This is because the elements 0 and 1 have the same
unambiguous representation in all fields of characteristic two. To find roots of a binary

6-132

 Error Detection and Correction

polynomial in an extension field, apply the roots function to a Galois vector in the
extension field whose array elements are the binary coefficients of the polynomial.

The example below seeks the roots of a binary polynomial in various fields.

gf2poly = gf([1 1 1],1); % x^2 + x + 1 in GF(2)

noroots = roots(gf2poly); % No roots in the ground field, GF(2)

gf4poly = gf([1 1 1],2); % x^2 + x + 1 in GF(4)

roots4 = roots(gf4poly); % The roots are A and A+1, in GF(4).

gf16poly = gf([1 1 1],4); % x^2 + x + 1 in GF(16)

roots16 = roots(gf16poly); % Roots in GF(16)

checkanswer4 = polyval(gf4poly,roots4); % Zero vector

checkanswer16 = polyval(gf16poly,roots16); % Zero vector

The roots of the polynomial do not exist in GF(2), so noroots is an empty array.
However, the roots of the polynomial exist in GF(4) as well as in GF(16), so roots4 and
roots16 are nonempty.

Notice that roots4 and roots16 are not equal to each other. They differ in these ways:

• roots4 is a GF(4) array, while roots16 is a GF(16) array. MATLAB keeps track of
the underlying field of a Galois array.

• The array elements in roots4 and roots16 differ because they use representations
with respect to different primitive polynomials. For example, 2 (which represents a
primitive element) is an element of the vector roots4 because the default primitive
polynomial for GF(4) is the same polynomial that gf4poly represents. On the other
hand, 2 is not an element of roots16 because the primitive element of GF(16) is not a
root of the polynomial that gf16poly represents.

Minimal Polynomials

The minimal polynomial of an element of GF(2m) is the smallest degree nonzero binary-
coefficient polynomial having that element as a root in GF(2m). To find the minimal
polynomial of an element or a column vector of elements, use the minpol function.

The code below finds that the minimal polynomial of gf(6,4) is D2 + D + 1 and then
checks that gf(6,4) is indeed among the roots of that polynomial in the field GF(16).

m = 4;

e = gf(6,4);

em = minpol(e) % Find minimal polynomial of e. em is in GF(2).

emr = roots(gf([0 0 1 1 1],m)) % Roots of D^2+D+1 in GF(2^m)

6-133

6 System Design

The output is

em = GF(2) array.

Array elements =

 0 0 1 1 1

emr = GF(2^4) array. Primitive polynomial = D^4+D+1 (19 decimal)

Array elements =

 6

 7

To find out which elements of a Galois field share the same minimal polynomial, use the
cosets function.

Manipulating Galois Variables

• “Section Overview” on page 6-134
• “Determining Whether a Variable Is a Galois Array” on page 6-134
• “Extracting Information from a Galois Array” on page 6-135

Section Overview

This section describes techniques for manipulating Galois variables or for transferring
information between Galois arrays and ordinary MATLAB arrays.

Note: These techniques are particularly relevant if you write MATLAB file functions that
process Galois arrays. For an example of this type of usage, enter edit gf/conv in the
Command Window and examine the first several lines of code in the editor window.

Determining Whether a Variable Is a Galois Array

To find out whether a variable is a Galois array rather than an ordinary MATLAB array,
use the isa function. An illustration is below.

mlvar = eye(3);

gfvar = gf(mlvar,3);

6-134

 Error Detection and Correction

no = isa(mlvar,'gf'); % False because mlvar is not a Galois array

yes = isa(gfvar,'gf'); % True because gfvar is a Galois array

Extracting Information from a Galois Array

To extract the array elements, field order, or primitive polynomial from a variable that
is a Galois array, append a suffix to the name of the variable. The table below lists the
exact suffixes, which are independent of the name of the variable.

Information Suffix Output Value

Array elements .x MATLAB array of type
uint16 that contains the
data values from the Galois
array.

Field order .m Integer of type double that
indicates that the Galois
array is in GF(2^m).

Primitive polynomial .prim_poly Integer of type uint32
that represents the
primitive polynomial. The
representation is similar
to the description in “How
Integers Correspond to
Galois Field Elements” on
page 6-111.

Note: If the output value is an integer data type and you want to convert it to double for
later manipulation, use the double function.

The code below illustrates the use of these suffixes. The definition of empr uses a vector
of binary coefficients of a polynomial to create a Galois array in an extension field.
Another part of the example retrieves the primitive polynomial for the field and converts
it to a binary vector representation having the appropriate number of bits.

% Check that e solves its own minimal polynomial.

e = gf(6,4); % An element of GF(16)

emp = minpol(e); % The minimal polynomial, emp, is in GF(2).

empr = roots(gf(emp.x,e.m)); % Find roots of emp in GF(16).

6-135

6 System Design

% Check that the primitive element gf(2,m) is

% really a root of the primitive polynomial for the field.

primpoly_int = double(e.prim_poly);

mval = e.m;

primpoly_vect = gf(de2bi(primpoly_int,mval+1,'left-msb'),mval);

containstwo = roots(primpoly_vect); % Output vector includes 2.

Converting Galois Array to Doubles

a = gf([1,0])

b = double(a.x) %a.x is in uint16

MATLAB returns the following:

a = GF(2) array.

Array elements =

 1 0

b =

 1 0

Speed and Nondefault Primitive Polynomials

The section “Specifying the Primitive Polynomial” on page 6-112 described how to
represent elements of a Galois field with respect to a primitive polynomial of your choice.
This section describes how you can increase the speed of computations involving a Galois
array that uses a primitive polynomial other than the default primitive polynomial. The
technique is recommended if you perform many such computations.

The mechanism for increasing the speed is a data file, userGftable.mat, that some
computational functions use to avoid performing certain computations repeatedly. To
take advantage of this mechanism for your combination of field order (m) and primitive
polynomial (prim_poly):

1 Navigate in the MATLAB application to a folder to which you have write permission.
You can use either the cd function or the Current Folder feature to navigate.

2 Define m and prim_poly as workspace variables. For example:

m = 3; prim_poly = 13; % Examples of valid values

3 Invoke the gftable function:

6-136

 Error Detection and Correction

gftable(m,prim_poly); % If you previously defined m and prim_poly

The function revises or creates userGftable.mat in your current working folder to
include data relating to your combination of field order and primitive polynomial. After
you initially invest the time to invoke gftable, subsequent computations using those
values of m and prim_poly should be faster.

Note: If you change your current working directory after invoking gftable, you
must place userGftable.mat on your MATLAB path to ensure that MATLAB can
see it. Do this by using the addpath command to prefix the directory containing
userGftable.mat to your MATLAB path. If you have multiple copies of
userGftable.mat on your path, use which('userGftable.mat','-all') to find out
where they are and which one MATLAB is using.

To see how much gftable improves the speed of your computations, you can surround
your computations with the tic and toc functions. See the gftable reference page for
an example.

Selected Bibliography for Galois Fields

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, MA,
Addison-Wesley, 1983, p. 105.

[2] Lang, Serge, Algebra, Third Edition, Reading, MA, Addison-Wesley, 1993.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Englewood Cliffs, NJ, Prentice-Hall, 1983.

[4] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag, 1982.

[5] Wicker, Stephen B., Error Control Systems for Digital Communication and Storage,
Upper Saddle River, NJ, Prentice Hall, 1995.

Galois Fields of Odd Characteristic

A Galois field is an algebraic field having pm elements, where p is prime and m is a
positive integer. This chapter describes how to work with Galois fields in which p is
odd. To work with Galois fields having an even number of elements, see Galois Field
Computations. The sections in this chapter are as follows.

6-137

6 System Design

• “Galois Field Terminology” on page 6-138
• “Representing Elements of Galois Fields” on page 6-138
• “Default Primitive Polynomials” on page 6-142
• “Converting and Simplifying Element Formats” on page 6-142
• “Arithmetic in Galois Fields” on page 6-146
• “Polynomials over Prime Fields” on page 6-148
• “Other Galois Field Functions” on page 6-152
• “Selected Bibliography for Galois Fields” on page 6-152

Galois Field Terminology

Throughout this section, p is an odd prime number and m is a positive integer.

Also, this document uses a few terms that are not used consistently in the literature. The
definitions adopted here appear in van Lint [5].

• A primitive element of GF(pm) is a cyclic generator of the group of nonzero elements
of GF(pm). This means that every nonzero element of the field can be expressed as
the primitive element raised to some integer power. Primitive elements are called A
throughout this section.

• A primitive polynomial for GF(pm) is the minimal polynomial of some primitive
element of GF(pm). As a consequence, it has degree m and is irreducible.

Representing Elements of Galois Fields

• “Section Overview” on page 6-138
• “Exponential Format” on page 6-139
• “Polynomial Format” on page 6-140
• “List of All Elements of a Galois Field” on page 6-140
• “Nonuniqueness of Representations” on page 6-141

Section Overview

This section discusses how to represent Galois field elements using this toolbox's
exponential format and polynomial format. It also describes a way to list all elements of
the Galois field, because some functions use such a list as an input argument. Finally, it
discusses the nonuniqueness of representations of Galois field elements.

6-138

 Error Detection and Correction

The elements of GF(p) can be represented using the integers from 0 to p-1.

When m is at least 2, GF(pm) is called an extension field. Integers alone cannot represent
the elements of GF(pm) in a straightforward way. MATLAB technical computing software
uses two main conventions for representing elements of GF(pm): the exponential format
and the polynomial format.

Note: Both the exponential format and the polynomial format are relative to your choice
of a particular primitive element A of GF(pm).

Exponential Format

This format uses the property that every nonzero element of GF(pm) can be expressed
as Ac for some integer c between 0 and pm-2. Higher exponents are not needed, because
the theory of Galois fields implies that every nonzero element of GF(pm) satisfies the
equation xq-1 = 1 where q = pm.

The use of the exponential format is shown in the table below.

Element of GF(pm) MATLAB Representation of the Element

0 -Inf

A0 = 1 0

A1 1

... ...

Aq-2 where q = pm q-2

Although -Inf is the standard exponential representation of the zero element, all
negative integers are equivalent to -Inf when used as input arguments in exponential
format. This equivalence can be useful; for example, see the concise line of code at the
end of the section “Default Primitive Polynomials” on page 6-142.

Note: The equivalence of all negative integers and -Inf as exponential formats means
that, for example, -1 does not represent A-1, the multiplicative inverse of A. Instead, -1
represents the zero element of the field.

6-139

6 System Design

Polynomial Format

The polynomial format uses the property that every element of GF(pm) can be expressed
as a polynomial in A with exponents between 0 and m-1, and coefficients in GF(p). In the
polynomial format, the element

A(1) + A(2) A + A(3) A2 + ... + A(m) Am-1

is represented in MATLAB by the vector

[A(1) A(2) A(3) ... A(m)]

Note: The Galois field functions in this toolbox represent a polynomial as a vector that
lists the coefficients in order of ascending powers of the variable. This is the opposite of
the order that other MATLAB functions use.

List of All Elements of a Galois Field

Some Galois field functions in this toolbox require an argument that lists all elements
of an extension field GF(pm). This is again relative to a particular primitive element A
of GF(pm). The proper format for the list of elements is that of a matrix having pm rows,
one for each element of the field. The matrix has m columns, one for each coefficient of
a power of A in the polynomial format shown in “Polynomial Format” on page 6-140
above. The first row contains only zeros because it corresponds to the zero element in
GF(pm). If k is between 2 and pm, then the kth row specifies the polynomial format of the
element Ak-2.

The minimal polynomial of A aids in the computation of this matrix, because it tells
how to express Am in terms of lower powers of A. For example, the table below lists
the elements of GF(32), where A is a root of the primitive polynomial 2 + 2x + x2. This
polynomial allows repeated use of the substitution

A2 = -2 - 2A = 1 + A

when performing the computations in the middle column of the table.

Elements of GF(9)

6-140

 Error Detection and Correction

Exponential Format Polynomial Format Row of MATLAB Matrix of
Elements

A-Inf 0 0 0

A0 1 1 0

A1 A 0 1

A2 1+A 1 1

A3 A + A2 = A + 1 + A = 1 + 2A 1 2

A4 A + 2A2 = A + 2 + 2A = 2 2 0

A5 2A 0 2

A6 2A2 = 2 + 2A 2 2

A7 2A + 2A2 = 2A + 2 + 2A = 2 + A 2 1

Example

An automatic way to generate the matrix whose rows are in the third column of the table
above is to use the code below.

p = 3; m = 2;

% Use the primitive polynomial 2 + 2x + x^2 for GF(9).

prim_poly = [2 2 1];

field = gftuple([-1:p^m-2]',prim_poly,p);

The gftuple function is discussed in more detail in “Converting and Simplifying
Element Formats” on page 6-142.

Nonuniqueness of Representations

A given field has more than one primitive element. If two primitive elements have
different minimal polynomials, then the corresponding matrices of elements will have
their rows in a different order. If the two primitive elements share the same minimal
polynomial, then the matrix of elements of the field is the same.

Note: You can use whatever primitive element you want, as long as you understand how
the inputs and outputs of Galois field functions depend on the choice of some primitive
polynomial. It is usually best to use the same primitive polynomial throughout a given
script or function.

6-141

6 System Design

Other ways in which representations of elements are not unique arise from the equations
that Galois field elements satisfy. For example, an exponential format of 8 in GF(9) is
really the same as an exponential format of 0, because A8 = 1 = A0 in GF(9). As another
example, the substitution mentioned just before the table Elements of GF(9) shows that
the polynomial format [0 0 1] is really the same as the polynomial format [1 1].

Default Primitive Polynomials

This toolbox provides a default primitive polynomial for each extension field. You can
retrieve this polynomial using the gfprimdf function. The command

prim_poly = gfprimdf(m,p); % If m and p are already defined

produces the standard row-vector representation of the default minimal polynomial for
GF(pm).

For example, the command below shows that the default primitive polynomial for GF(9)
is 2 + x + x2, not the polynomial used in “List of All Elements of a Galois Field” on page
6-140.

poly1=gfprimdf(2,3);

poly1 =

 2 1 1

To generate a list of elements of GF(pm) using the default primitive polynomial, use the
command

field = gftuple([-1:p^m-2]',m,p);

Converting and Simplifying Element Formats

• “Converting to Simplest Polynomial Format” on page 6-142
• “Example: Generating a List of Galois Field Elements” on page 6-144
• “Converting to Simplest Exponential Format” on page 6-145

Converting to Simplest Polynomial Format

The gftuple function produces the simplest polynomial representation of an element
of GF(pm), given either an exponential representation or a polynomial representation of

6-142

 Error Detection and Correction

that element. This can be useful for generating the list of elements of GF(pm) that other
functions require.

Using gftuple requires three arguments: one representing an element of GF(pm),
one indicating the primitive polynomial that MATLAB technical computing software
should use when computing the output, and the prime p. The table below indicates how
gftuple behaves when given the first two arguments in various formats.

Behavior of gftuple Depending on Format of First Two Inputs

How to Specify Element How to Indicate Primitive
Polynomial

What gftuple Produces

Exponential format; c = any
integer

Integer m > 1 Polynomial format of Ac,
where A is a root of the
default primitive polynomial
for GF(pm)

Example: tp = gftuple(6,2,3); % c = 6 here
Exponential format; c = any
integer

Vector of coefficients of
primitive polynomial

Polynomial format of Ac,
where A is a root of the given
primitive polynomial

Example: polynomial = gfprimdf(2,3); tp = gftuple(6,polynomial,3); %
c = 6 here
Polynomial format of any
degree

Integer m > 1 Polynomial format of degree
< m, using default primitive
polynomial for GF(pm) to
simplify

Example: tp = gftuple([0 0 0 0 0 0 1],2,3);
Polynomial format of any
degree

Vector of coefficients of
primitive polynomial

Polynomial format of
degree < m, using the given
primitive polynomial for
GF(pm) to simplify

Example: polynomial = gfprimdf(2,3); tp = gftuple([0 0 0 0 0 0
1],polynomial,3);

The four examples that appear in the table above all produce the same vector tp =
[2, 1], but their different inputs to gftuple correspond to the lines of the table. Each

6-143

6 System Design

example expresses the fact that A6 = 2+A, where A is a root of the (default) primitive
polynomial 2 + x+ x2 for GF(32).

Example

This example shows how gfconv and gftuple combine to multiply two polynomial-
format elements of GF(34). Initially, gfconv multiplies the two polynomials, treating the
primitive element as if it were a variable. This produces a high-order polynomial, which
gftuple simplifies using the polynomial equation that the primitive element satisfies.
The final result is the simplest polynomial format of the product.

p = 3; m = 4;

a = [1 2 0 1]; b = [2 2 1 2];

notsimple = gfconv(a,b,p) % a times b, using high powers of alpha

simple = gftuple(notsimple,m,p) %Highest exponent of alpha is m-1

The output is below.

notsimple =

 2 0 2 0 0 1 2

simple =

 2 1 0 1

Example: Generating a List of Galois Field Elements

This example applies the conversion functionality to the task of generating a matrix
that lists all elements of a Galois field. A matrix that lists all field elements is an input
argument in functions such as gfadd and gfmul. The variables field1 and field2
below have the format that such functions expect.

p = 5; % Or any prime number

m = 4; % Or any positive integer

field1 = gftuple([-1:p^m-2]',m,p);

prim_poly = gfprimdf(m,p); % Or any primitive polynomial

% for GF(p^m)

field2 = gftuple([-1:p^m-2]',prim_poly,p);

6-144

 Error Detection and Correction

Converting to Simplest Exponential Format

The same function gftuple also produces the simplest exponential representation
of an element of GF(pm), given either an exponential representation or a polynomial
representation of that element. To retrieve this output, use the syntax

[polyformat, expformat] = gftuple(...)

The input format and the output polyformat are as in the table Behavior of gftuple
Depending on Format of First Two Inputs. In addition, the variable expformat contains
the simplest exponential format of the element represented in polyformat. It is simplest
in the sense that the exponent is either -Inf or a number between 0 and pm-2.

Example

To recover the exponential format of the element 2 + A that the previous section
considered, use the commands below. In this case, polyformat contains redundant
information, while expformat contains the desired result.

[polyformat, expformat] = gftuple([2 1],2,3)

polyformat =

 2 1

expformat =

 6

This output appears at first to contradict the information in the table Elements of
GF(9), but in fact it does not. The table uses a different primitive element; two plus that
primitive element has the polynomial and exponential formats shown below.

prim_poly = [2 2 1];

[polyformat2, expformat2] = gftuple([2 1],prim_poly,3)

The output below reflects the information in the bottom line of the table.

polyformat2 =

 2 1

expformat2 =

6-145

6 System Design

 7

Arithmetic in Galois Fields

• “Section Overview” on page 6-146
• “Arithmetic in Prime Fields” on page 6-146
• “Arithmetic in Extension Fields” on page 6-147

Section Overview

You can add, subtract, multiply, and divide elements of Galois fields using the functions
gfadd, gfsub, gfmul, and gfdiv, respectively. Each of these functions has a mode for
prime fields and a mode for extension fields.
Arithmetic in Prime Fields

Arithmetic in GF(p) is the same as arithmetic modulo p. The functions gfadd, gfmul,
gfsub, and gfdiv accept two arguments that represent elements of GF(p) as integers
between 0 and p-1. The third argument specifies p.

Example: Addition Table for GF(5)

The code below constructs an addition table for GF(5). If a and b are between 0 and 4,
then the element gfp_add(a+1,b+1) represents the sum a+b in GF(5). For example,
gfp_add(3,5) = 1 because 2+4 is 1 modulo 5.

p = 5;

row = 0:p-1;

table = ones(p,1)*row;

gfp_add = gfadd(table,table',p)

The output for this example follows.

gfp_add =

 0 1 2 3 4

 1 2 3 4 0

 2 3 4 0 1

 3 4 0 1 2

 4 0 1 2 3

Other values of p produce tables for different prime fields GF(p). Replacing gfadd by
gfmul, gfsub, or gfdiv produces a table for the corresponding arithmetic operation in
GF(p).

6-146

 Error Detection and Correction

Arithmetic in Extension Fields

The same arithmetic functions can add elements of GF(pm) when m > 1, but the format
of the arguments is more complicated than in the case above. In general, arithmetic in
extension fields is more complicated than arithmetic in prime fields; see the works listed
in “Selected Bibliography for Galois Fields” on page 6-152 for details about how the
arithmetic operations work.

When working in extension fields, the functions gfadd, gfmul, gfsub, and gfdiv use
the first two arguments to represent elements of GF(pm) in exponential format. The third
argument, which is required, lists all elements of GF(pm) as described in “List of All
Elements of a Galois Field” on page 6-140. The result is in exponential format.

Example: Addition Table for GF(9)

The code below constructs an addition table for GF(32), using exponential formats
relative to a root of the default primitive polynomial for GF(9). If a and b are between -1
and 7, then the element gfpm_add(a+2,b+2) represents the sum of Aa and Ab in GF(9).
For example, gfpm_add(4,6) = 5 because

A2 + A4 = A5

Using the fourth and sixth rows of the matrix field, you can verify that

A2 + A4 = (1 + 2A) + (2 + 0A) = 3 + 2A = 0 + 2A = A5 modulo 3.

p = 3; m = 2; % Work in GF(3^2).

field = gftuple([-1:p^m-2]',m,p); % Construct list of elements.

row = -1:p^m-2;

table = ones(p^m,1)*row;

gfpm_add = gfadd(table,table',field)

The output is below.

gfpm_add =

 -Inf 0 1 2 3 4 5 6 7

 0 4 7 3 5 -Inf 2 1 6

 1 7 5 0 4 6 -Inf 3 2

 2 3 0 6 1 5 7 -Inf 4

 3 5 4 1 7 2 6 0 -Inf

 4 -Inf 6 5 2 0 3 7 1

 5 2 -Inf 7 6 3 1 4 0

6-147

6 System Design

 6 1 3 -Inf 0 7 4 2 5

 7 6 2 4 -Inf 1 0 5 3

Note: If you used a different primitive polynomial, then the tables would look different.
This makes sense because the ordering of the rows and columns of the tables was based
on that particular choice of primitive polynomial and not on any natural ordering of the
elements of GF(9).

Other values of p and m produce tables for different extension fields GF(p^m). Replacing
gfadd by gfmul, gfsub, or gfdiv produces a table for the corresponding arithmetic
operation in GF(p^m).

Polynomials over Prime Fields

• “Section Overview” on page 6-148
• “Cosmetic Changes of Polynomials” on page 6-148
• “Polynomial Arithmetic” on page 6-149
• “Characterization of Polynomials” on page 6-150
• “Roots of Polynomials” on page 6-150

Section Overview

A polynomial over GF(p) is a polynomial whose coefficients are elements of GF(p).
Communications System Toolbox software provides functions for

• Changing polynomials in cosmetic ways
• Performing polynomial arithmetic
• Characterizing polynomials as primitive or irreducible
• Finding roots of polynomials in a Galois field

Note: The Galois field functions in this toolbox represent a polynomial over GF(p) for
odd values of p as a vector that lists the coefficients in order of ascending powers of
the variable. This is the opposite of the order that other MATLAB functions use.

Cosmetic Changes of Polynomials

To display the traditionally formatted polynomial that corresponds to a row vector
containing coefficients, use gfpretty. To truncate a polynomial by removing all zero-

6-148

 Error Detection and Correction

coefficient terms that have exponents higher than the degree of the polynomial, use
gftrunc. For example,

polynom = gftrunc([1 20 394 10 0 0 29 3 0 0])

gfpretty(polynom)

The output is below.

polynom =

 1 20 394 10 0 0 29 3

 2 3 6 7

 1 + 20 X + 394 X + 10 X + 29 X + 3 X

Note: If you do not use a fixed-width font, then the spacing in the display might not look
correct.

Polynomial Arithmetic

The functions gfadd and gfsub add and subtract, respectively, polynomials over GF(p).
The gfconv function multiplies polynomials over GF(p). The gfdeconv function divides
polynomials in GF(p), producing a quotient polynomial and a remainder polynomial. For
example, the commands below show that 2 + x + x2 times 1 + x over the field GF(3) is
2 + 2x2 + x3.

a = gfconv([2 1 1],[1 1],3)

[quot, remd] = gfdeconv(a,[2 1 1],3)

The output is below.

a =

 2 0 2 1

quot =

 1 1

remd =

6-149

6 System Design

 0

The previously discussed functions gfadd and gfsub add and subtract, respectively,
polynomials. Because it uses a vector of coefficients to represent a polynomial, MATLAB
does not distinguish between adding two polynomials and adding two row vectors
elementwise.

Characterization of Polynomials

Given a polynomial over GF(p), the gfprimck function determines whether it is
irreducible and/or primitive. By definition, if it is primitive then it is irreducible;
however, the reverse is not necessarily true. The gfprimdf and gfprimfd functions
return primitive polynomials.

Given an element of GF(pm), the gfminpol function computes its minimal polynomial
over GF(p).

Example

For example, the code below reflects the irreducibility of all minimal polynomials.
However, the minimal polynomial of a nonprimitive element is not a primitive
polynomial.

p = 3; m = 4;

% Use default primitive polynomial here.

prim_poly = gfminpol(1,m,p);

ckprim = gfprimck(prim_poly,p);

% ckprim = 1, since prim_poly represents a primitive polynomial.

notprimpoly = gfminpol(5,m,p);

cknotprim = gfprimck(notprimpoly,p);

% cknotprim = 0 (irreducible but not primitive)

% since alpha^5 is not a primitive element when p = 3.

ckreducible = gfprimck([0 1 1],p);

% ckreducible = -1 since the polynomial is reducible.

Roots of Polynomials

Given a polynomial over GF(p), the gfroots function finds the roots of the polynomial
in a suitable extension field GF(pm). There are two ways to tell MATLAB the degree m of
the extension field GF(pm), as shown in the following table.

6-150

 Error Detection and Correction

Formats for Second Argument of gfroots

Second Argument Represents

A positive integer m as in GF(pm). MATLAB uses the default
primitive polynomial in its computations.

A row vector A primitive polynomial for GF(pm). Here m
is the degree of this primitive polynomial.

Example: Roots of a Polynomial in GF(9)

The code below finds roots of the polynomial 1 + x2 + x3 in GF(9) and then checks that
they are indeed roots. The exponential format of elements of GF(9) is used throughout.

p = 3; m = 2;

field = gftuple([-1:p^m-2]',m,p); % List of all elements of GF(9)

% Use default primitive polynomial here.

polynomial = [1 0 1 1]; % 1 + x^2 + x^3

rts =gfroots(polynomial,m,p) % Find roots in exponential format

% Check that each one is actually a root.

for ii = 1:3

 root = rts(ii);

 rootsquared = gfmul(root,root,field);

 rootcubed = gfmul(root,rootsquared,field);

 answer(ii)= gfadd(gfadd(0,rootsquared,field),rootcubed,field);

 % Recall that 1 is really alpha to the zero power.

 % If answer = -Inf, then the variable root represents

 % a root of the polynomial.

end

answer

6-151

6 System Design

The output shows that A0 (which equals 1), A5, and A7 are roots.

roots =

 0

 5

 7

answer =

 -Inf -Inf -Inf

See the reference page for gfroots to see how gfroots can also provide you with the
polynomial formats of the roots and the list of all elements of the field.

Other Galois Field Functions

See the online reference pages for information about these other Galois field functions in
Communications System Toolbox software:

• gfcosets, which produces cyclotomic cosets
• gffilter, which filters data using GF(p) polynomials
• gfprimfd, which finds primitive polynomials
• gfrank, which computes the rank of a matrix over GF(p)
• gfrepcov, which converts one binary polynomial representation to another

Selected Bibliography for Galois Fields

[1] Blahut, Richard E., Theory and Practice of Error Control Codes, Reading, Mass.,
Addison-Wesley, 1983.

[2] Lang, Serge, Algebra, Third Edition, Reading, Mass., Addison-Wesley, 1993.

[3] Lin, Shu, and Daniel J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Englewood Cliffs, N.J., Prentice-Hall, 1983.

[4] van Lint, J. H., Introduction to Coding Theory, New York, Springer-Verlag, 1982.

6-152

 Interleaving

Interleaving

In this section...

“Block Interleaving” on page 6-153
“Convolutional Interleaving” on page 6-158
“Selected Bibliography for Interleaving” on page 6-170

Block Interleaving

• “Block Interleaving Features” on page 6-153
• “Improve Error Rate Using Block Interleaving in MATLAB” on page 6-155
• “Improve Error Rate Using Block Interleaving in Simulink” on page 6-156

Block Interleaving Features

A block interleaver accepts a set of symbols and rearranges them, without repeating or
omitting any of the symbols in the set. The number of symbols in each set is fixed for a
given interleaver. The interleaver's operation on a set of symbols is independent of its
operation on all other sets of symbols.

An interleaver permutes symbols according to a mapping. A corresponding deinterleaver
uses the inverse mapping to restore the original sequence of symbols. Interleaving
and deinterleaving can be useful for reducing errors caused by burst errors in a
communication system.

Each interleaver function has a corresponding deinterleaver function. In typical usage
of the interleaver/deinterleaver pairs, the inputs of the deinterleaver match those of the
interleaver, except for the data being rearranged.

A block interleaver accepts a set of symbols and rearranges them, without repeating or
omitting any of the symbols in the set. The number of symbols in each set is fixed for a
given interleaver.

The set of block interleavers in this toolbox includes a general block interleaver as well as
several special cases. Each special-case interleaver function uses the same computational
code that the general block interleaver function uses, but provides a syntax that is more
suitable for the special case. The interleaver functions are described below.

6-153

6 System Design

Type of Interleaver Interleaver Function Description

General block
interleaver

intrlv Uses the permutation table given
explicitly as an input argument.

Algebraic interleaver algintrlv Derives a permutation table
algebraically, using the Takeshita-
Costello or Welch-Costas method.
These methods are described in
[4].

Helical scan
interleaver

helscanintrlv Fills a matrix with data row by
row and then sends the matrix
contents to the output in a helical
fashion.

Matrix interleaver matintrlv Fills a matrix with data elements
row by row and then sends the
matrix contents to the output
column by column.

Random interleaver randintrlv Chooses a permutation table
randomly using the initial state
input that you provide.

Types of Block Interleavers

The set of block interleavers in this library includes a general interleaver/deinterleaver
pair as well as several special cases. Each special-case block uses the same computational
code that its more general counterpart uses, but provides an interface that is more
suitable for the special case.

The Matrix Interleaver block accomplishes block interleaving by filling a matrix
with the input symbols row by row and then sending the matrix contents to the output
port column by column. For example, if the interleaver uses a 2-by-3 matrix to do its
internal computations, then for an input of [1 2 3 4 5 6], the block produces an
output of [1 4 2 5 3 6].

The Random Interleaver block chooses a permutation table randomly using the
Initial seed parameter that you provide in the block mask. By using the same Initial
seed value in the corresponding Random Deinterleaver block, you can restore the
permuted symbols to their original ordering.

6-154

 Interleaving

The Algebraic Interleaver block uses a permutation table that is algebraically
derived. It supports Takeshita-Costello interleavers and Welch-Costas interleavers.
These interleavers are described in [4].

Improve Error Rate Using Block Interleaving in MATLAB

The following example illustrates how an interleaver improves the error rate in a
communication system whose channel produces a burst of errors. A random interleaver
rearranges the bits of numerous codewords before two adjacent codewords are each
corrupted by three errors.

Three errors exceed the error-correction capability of the Hamming code. However,
the example shows that when the Hamming code is combined with an interleaver, this
system is able to recover the original message despite the 6-bit burst of errors. The
improvement in performance occurs because the interleaving effectively spreads the
errors among different codewords so that the number of errors per codeword is within the
error-correction capability of the code.

st1 = 27221; st2 = 4831; % States for random number generator

n = 7; k = 4; % Parameters for Hamming code

msg = randi([0 1],k*500,1); % Data to encode

code = encode(msg,n,k,'hamming/binary'); % Encoded data

% Create a burst error that will corrupt two adjacent codewords.

errors = zeros(size(code)); errors(n-2:n+3) = [1 1 1 1 1 1];

% With Interleaving

%------------------

inter = randintrlv(code,st2); % Interleave.

inter_err = bitxor(inter,errors); % Include burst error.

deinter = randdeintrlv(inter_err,st2); % Deinterleave.

decoded = decode(deinter,n,k,'hamming/binary'); % Decode.

disp('Number of errors and error rate, with interleaving:');

[number_with,rate_with] = biterr(msg,decoded) % Error statistics

% Without Interleaving

%---------------------

code_err = bitxor(code,errors); % Include burst error.

decoded = decode(code_err,n,k,'hamming/binary'); % Decode.

disp('Number of errors and error rate, without interleaving:');

[number_without,rate_without] = biterr(msg,decoded) % Error statistics

The output from the example follows.

Number of errors and error rate, with interleaving:

6-155

6 System Design

number_with =

 0

rate_with =

 0

Number of errors and error rate, without interleaving:

number_without =

 4

rate_without =

 0.0020

Improve Error Rate Using Block Interleaving in Simulink

The following example shows how to use an interleaver to improve the error rate when
the channel produces bursts of errors.

Before running the model, you must create a binary vector that simulates bursts of
errors, as described in “Improve Error Rate Using Block Interleaving in Simulink” on
page 6-156. The Signal From Workspace block imports this vector from the MATLAB
workspace into the model, where the Logical Operator block performs an XOR of the
vector with the signal.

To open the completed model, type doc_interleaver at the MATLAB command line.
To build the model, gather and configure these blocks:

6-156

 Interleaving

• Bernoulli Binary Generator, in the Random Data Sources sublibrary of the
Comm Sources library

• Check the box next to Frame-based outputs.
• Set Samples per frame to 4.

• Hamming Encoder, in the Block sublibrary of the Error Detection and Correction
library. Use default parameters

• Buffer, in the Buffers sublibrary of the Signal Management library in DSP System
Toolbox

• Set Output buffer size (per channel) to 84.
• Random Interleaver, in the Block sublibrary of the Interleaving library in

Communications System Toolbox

• Set Number of elements to 84.
• Logical Operator, in the Simulink Math Operations library

• Set Operator to XOR.
• Signal From Workspace, in the Sources library of the DSP System Toolbox product

• Set Signal to errors.
• Set Sample time to 4/7.
• Set Samples per frame to 84.

• Random Deinterleaver, in the Block sublibrary of the Interleaving library in
Communications System Toolbox

• Set Number of elements to 84.
• Buffer, in the Buffers sublibrary of the Signal Management library in DSP System

Toolbox

• Set Output buffer size (per channel) to 7.
• Hamming Decoder, in the Block sublibrary of the Error Detection and Correction

library. Use default parameters.
• Error Rate Calculation, in the Comm Sinks library

• Set Receive delay to (4/7)*84.
• Set Computation delay to 100.

6-157

6 System Design

• Set Output data to Port.
• Display, in the Simulink Sinks library. Use default parameters.

Click the Simulation menu and select Model Configuration parameters. Set Stop
time to length(errors).

Creating the Vector of Errors

Before running the model, use the following code to create a binary vector in the
MATLAB workspace. The model uses this vector to simulate bursts of errors. The vector
contains blocks of three 1s, representing bursts of errors, at random intervals. The
distance between two consecutive blocks of 1s is a random integer between 1 and 80.

errors=zeros(1,10^4);

n=1;

while n<10^4-80;

n=n+floor(79*rand(1))+3;

errors(n:n+2)=[1 1 1];

end

To determine the ratio of the number of 1s to the total number of symbols in the vector
errors enter

sum(errors)/length(errors)

Your answer should be approximately 3/43, or .0698, since after each sequence of three
1s, the expected distance to the next sequence of 1s is 40. Consequently, you expect to see
three 1s in 43 terms of the sequence. If there were no error correction in the model, the
bit error rate would be approximately .0698.

When you run a simulation with the model, the error rate is approximately .019, which
shows the improvement due to error correction and interleaving. You can see the effect of
interleaving by deleting the Random Interleaver and Random Deinterleaver blocks from
the model, connecting the lines, and running another simulation. The bit error rate is
higher without interleaving because the Hamming code can only correct one error in each
codeword.

Convolutional Interleaving

• “Convolutional Interleaving Features” on page 6-159
• “Delays of Convolutional Interleavers” on page 6-161

6-158

 Interleaving

• “Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive
Integers in MATLAB” on page 6-165

• “Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive
Integers in Simulink” on page 6-168

Convolutional Interleaving Features

A convolutional interleaver consists of a set of shift registers, each with a fixed delay.
In a typical convolutional interleaver, the delays are nonnegative integer multiples of
a fixed integer (although a general multiplexed interleaver allows unrestricted delay
values). Each new symbol from an input vector feeds into the next shift register and
the oldest symbol in that register becomes part of the output vector. A convolutional
interleaver has memory; that is, its operation depends not only on current symbols but
also on previous symbols.

The schematic below depicts the structure of a general convolutional interleaver by
showing the set of shift registers and their delay values D(1), D(2),..., D(N). The kth shift
register holds D(k) symbols, where k = 1,2,...,N. The convolutional interleaving functions
in this toolbox have input arguments that indicate the number of shift registers and the
delay for each shift register.

z-D(1)

z-D(2)

z-D(N)

.
.
.

Input Output

Communications System Toolbox implements convolutional interleaving functionality
using Simulink blocks, System objects, and MATLAB functions.

The set of convolutional interleavers in this product includes a general interleaver/
deinterleaver pair as well as several special cases. Each special-case function uses the

6-159

6 System Design

same computational code that its more general counterpart uses, but provides a syntax
that is more suitable for the special case. The special cases are described below.

Type of Interleaver Interleaving Function Description

General multiplexed
interleaver

muxintrlv Allows unrestricted delay values
for the set of shift registers.

Convolutional
interleaver

convintrlv The delay values for the set of
shift registers are nonnegative
integer multiples of a fixed integer
that you specify.

Helical interleaver helintrlv Fills an array with input symbols
in a helical fashion and empties
the array row by row.

The helscanintrlv function and the helintrlv function both use a helical array for
internal computations. However, the two functions have some important differences:

• helintrlv uses an unlimited-row array, arranges input symbols in the array along
columns, outputs some symbols that are not from the current input, and leaves some
input symbols in the array without placing them in the output.

• helscanintrlv uses a fixed-size matrix, arranges input symbols in the array across
rows, and outputs all the input symbols without using any default values or values
from a previous call.

Types of Convolutional Interleavers

The set of convolutional interleavers in this library includes a general interleaver/
deinterleaver pair as well as several special cases. Each special-case block uses the same
computational code that its more general counterpart uses, but provides an interface that
is more suitable for the special case.

The most general block in this library is the General Multiplexed Interleaver
block, which allows arbitrary delay values for the set of shift registers. To implement
the preceding schematic using this block, use an Interleaver delay parameter of
[D(1); D(2); ...; D(N)].

More specific is the Convolutional Interleaver block, in which the delay value
for the kth shift register is (k-1) times the block's Register length step parameter.
The number of shift registers in this block is the value of the Rows of shift registers
parameter.

6-160

 Interleaving

Finally, the Helical Interleaver block supports a special case of convolutional
interleaving that fills an array with symbols in a helical fashion and empties the array
row by row. To configure this interleaver, use the Number of columns of helical
array parameter to set the width of the array, and use the Group size and Helical
array step size parameters to determine how symbols are placed in the array. See the
reference page for the Helical Interleaver block for more details and an example.

Delays of Convolutional Interleavers

After a sequence of symbols passes through a convolutional interleaver and a
corresponding convolutional deinterleaver, the restored sequence lags behind the original
sequence. The delay, measured in symbols, between the original and restored sequences
is indicated in the table below. The variable names in the second column (delay, nrows,
slope, col, ngrp, and stp) refer to the inputs named on each function's reference page.

Delays of Interleaver/Deinterleaver Pairs

Interleaver/Deinterleaver Pair Delay Between Original and Restored Sequences

muxintrlv, muxdeintrlv length(delay)*max(delay)

convintrlv, convdeintrlv nrows*(nrows-1)*slope

helintrlv, heldeintrlv col*ngrp*ceil(stp*(col-1)/ngrp)

Delays of Convolutional Interleavers

After a sequence of symbols passes through a convolutional interleaver and a
corresponding convolutional deinterleaver, the restored sequence lags behind the original
sequence. The delay, measured in symbols, between the original and restored sequences
is
Number of shift registers × Maximum delay among all shift registers

for the most general multiplexed interleaver. If your model incurs an additional delay
between the interleaver output and the deinterleaver input, the restored sequence lags
behind the original sequence by the sum of the additional delay and the amount in the
preceding formula.

Note For proper synchronization, the delay in your model between the interleaver
output and the deinterleaver input must be an integer multiple of the number of shift
registers. You can use the DSP System Toolbox Delay block to adjust delays manually, if
necessary.

6-161

6 System Design

Convolutional Interleaver block

In the special case implemented by the Convolutional Interleaver/Convolutional
Deinterleaver pair, the number of shift registers is the Rows of shift registers
parameter, while the maximum delay among all shift registers is
B × (N-1)

where B is the Register length step parameter and N is the Rows of shift registers
parameter.

Helical Interleaver block

In the special case implemented by the Helical Interleaver/Helical Deinterleaver pair,
the delay between the restored sequence and the original sequence is

CN
s C

N

()-È

Í
Í

˘

˙
˙

1

where C is the Number of columns in helical array parameter, N is the Group size
parameter, and s is the Helical array step size parameter.

Effect of Delays on Recovery of Convolutionally Interleaved Data Using MATLAB

If you use a convolutional interleaver followed by a corresponding convolutional
deinterleaver, then a nonzero delay means that the recovered data (that is, the output
from the deinterleaver) is not the same as the original data (that is, the input to the
interleaver). If you compare the two data sets directly, then you must take the delay into
account by using appropriate truncating or padding operations.

Here are some typical ways to compensate for a delay of D in an interleaver/deinterleaver
pair:

• Interleave a version of the original data that is padded with D extra symbols at the
end. Before comparing the original data with the recovered data, omit the first D
symbols of the recovered data. In this approach, all the original symbols appear in the
recovered data.

• Before comparing the original data with the recovered data, omit the last D symbols
of the original data and the first D symbols of the recovered data. In this approach,
some of the original symbols are left in the deinterleaver's shift registers and do not
appear in the recovered data.

6-162

 Interleaving

The following code illustrates these approaches by computing a symbol error rate for the
interleaving/deinterleaving operation.

x = randi([0 63],20,1); % Original data

nrows = 3; slope = 2; % Interleaver parameters

D = nrows*(nrows-1)*slope; % Delay of interleaver/deinterleaver pair

hInt = comm.ConvolutionalInterleaver('NumRegisters', nrows, ...

 'RegisterLengthStep', slope);

hDeint = comm.ConvolutionalDeinterleaver('NumRegisters', nrows, ...

 'RegisterLengthStep', slope);

% First approach.

x_padded = [x; zeros(D,1)]; % Pad x at the end before interleaving.

a1 = step(hInt, x_padded); % Interleave padded data.

b1 = step(hDeint, a1)

% Omit input padding and the first D symbols of the recovered data and

% compare

servec1 = step(comm.ErrorRate('ReceiveDelay',D),x_padded,b1);

ser1 = servec1(1)

% Second approach.

release(hInt); release(hDeint)

a2 = step(hInt,x); % Interleave original data.

b2 = step(hDeint,a2)

% Omit the last D symbols of the original data and the first D symbols of

% the recovered data and compare.

servec2 = step(comm.ErrorRate('ReceiveDelay',D),x,b2);

ser2 = servec2(1)

The output is shown below. The zero values of ser1 and ser2 indicate that the script
correctly aligned the original and recovered data before computing the symbol error
rates. However, notice from the lengths of b1 and b2 that the two approaches to
alignment result in different amounts of deinterleaved data.

b1 =

 0

 0

 0

 0

 0

 0

 0

6-163

6 System Design

 0

 0

 0

 0

 0

 59

 42

 1

 28

 52

 54

 43

 8

 56

 5

 35

 37

 48

 17

 28

 62

 10

 31

 61

 39

ser1 =

 0

b2 =

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

6-164

 Interleaving

 0

 0

 59

 42

 1

 28

 52

 54

 43

 8

ser2 =

 0

Combining Interleaving Delays and Other Delays

If you use convolutional interleavers in a script that incurs an additional delay, d,
between the interleaver output and the deinterleaver input (for example, a delay from
a filter), then the restored sequence lags behind the original sequence by the sum of d
and the amount from the table Delays of Interleaver/Deinterleaver Pairs. In this case,
d must be an integer multiple of the number of shift registers, or else the convolutional
deinterleaver cannot recover the original symbols properly. If d is not naturally an
integer multiple of the number of shift registers, then you can adjust the delay manually
by padding the vector that forms the input to the deinterleaver.

Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive Integers in
MATLAB

The example below illustrates convolutional interleaving and deinterleaving using a
sequence of consecutive integers. It also illustrates the inherent delay of the interleaver/
deinterleaver pair.

x = [1:10]'; % Original data

delay = [0; 1; 2]; % Set delays of three shift registers.

hInt = comm.MultiplexedInterleaver('Delay', delay);

hDeint = comm.MultiplexedDeinterleaver('Delay', delay);

y = step(hInt,x) % Interleave.

z = step(hDeint,y) % Deinterleave.

In this example, the muxintrlv function initializes the three shift registers to the values
[], [0], and [0 0], respectively. Then the function processes the input data [1:10]',
performing internal computations as indicated in the table below.

6-165

6 System Design

Current Input Current Shift Register Current Output Contents of Shift
Registers

1 1 1 []

[0]

[0 0]

2 2 0 []

[2]

[0 0]

3 3 0 []

[2]

[0 3]

4 1 4 []

[2]

[0 3]

5 2 2 []

[5]

[0 3]

6 3 0 []

[5]

[3 6]

7 1 7 []

[5]

[3 6]

8 2 5 []

[8]

[3 6]

9 3 3 []

[8]

[6 9]

10 1 10 []

[8]

[6 9]

The output from the example is below.

y =

6-166

 Interleaving

 1

 0

 0

 4

 2

 0

 7

 5

 3

 10

state_y =

 value: {3x1 cell}

 index: 2

z =

 0

 0

 0

 0

 0

 0

 1

 2

 3

 4

Notice that the “Current Output” column of the table above agrees with the values in
the vector y. Also, the last row of the table above indicates that the last shift register
processed for the given data set is the first shift register. This agrees with the value of 2
for state_y.index, which indicates that any additional input data would be directed
to the second shift register. You can optionally check that the state values listed in
state_y.value match the “Contents of Shift Registers” entry in the last row of the
table by typing state_y.value{:} in the Command Window after executing the
example.

Another feature to notice about the example output is that z contains six zeros at the
beginning before containing any of the symbols from the original data set. The six

6-167

6 System Design

zeros illustrate that the delay of this convolutional interleaver/deinterleaver pair is
length(delay)*max(delay) = 3*2 = 6. For more information about delays, see
“Delays of Convolutional Interleavers” on page 6-161.

Convolutional Interleaving and Deinterleaving Using a Sequence of Consecutive Integers in
Simulink

The example below illustrates convolutional interleaving and deinterleaving using a
sequence of consecutive integers. It also illustrates the inherent delay and the effect of
the interleaving blocks' initial conditions.

To open the completed model, click here in the MATLAB Help browser. To build the
model, gather and configure these blocks:

• Ramp, in the Simulink Sources library. Use default parameters.
• Zero-Order Hold, in the Simulink Discrete library. Use default parameters.
• Convolutional Interleaver

• Set Rows of shift registers to 3.
• Set Initial conditions to [-1 -2 -3]'.

• Convolutional Deinterleaver

• Set Rows of shift registers to 3.
• Set Initial conditions to [-1 -2 -3]'.

• Two copies of To Workspace, in the Simulink Sinks library

• Set Variable name to interleaved and restored, respectively, in the two
copies of this block.

• Set Save format to Array in each of the two copies of this block.

6-168

 Interleaving

Connect the blocks as shown in the preceding diagram. From the model window's
Simulation menu, select Model Configuration parameters. In the Configuration
Parameters dialog box, set Stop time to 20. Run the simulation and execute the
following command:

comparison = [[0:20]', interleaved, restored]

comparison =

 0 0 -1

 1 -2 -2

 2 -3 -3

 3 3 -1

 4 -2 -2

 5 -3 -3

 6 6 -1

 7 1 -2

 8 -3 -3

 9 9 -1

 10 4 -2

 11 -3 -3

 12 12 0

 13 7 1

 14 2 2

 15 15 3

 16 10 4

 17 5 5

 18 18 6

 19 13 7

 20 8 8

In this output, the first column contains the original symbol sequence. The second
column contains the interleaved sequence, while the third column contains the restored
sequence.

The negative numbers in the interleaved and restored sequences come from the
interleaving blocks' initial conditions, not from the original data. The first of the original
symbols appears in the restored sequence only after a delay of 12 symbols. The delay of
the interleaver-deinterleaver combination is the product of the number of shift registers
(3) and the maximum delay among all shift registers (4).

For a similar example that also indicates the contents of the shift registers at each step
of the process, see “Convolutional Interleaving and Deinterleaving Using a Sequence

6-169

6 System Design

of Consecutive Integers in MATLAB” on page 6-165 in the Communications System
Toolbox documentation set.

Selected Bibliography for Interleaving

[1] Berlekamp, E.R., and P. Tong, “Improved Interleavers for Algebraic Block Codes,” U.
S. Patent 4559625, Dec. 17, 1985.

[2] Clark, George C. Jr., and J. Bibb Cain, Error-Correction Coding for Digital
Communications, New York, Plenum Press, 1981.

[3] Forney, G. D. Jr., “Burst-Correcting Codes for the Classic Bursty Channel,” IEEE
Transactions on Communications, vol. COM-19, October 1971, pp. 772-781.

[4] Heegard, Chris and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic
Publishers, 1999.

[5] Ramsey, J. L, “Realization of Optimum Interleavers,” IEEE Transactions on
Information Theory, IT-16 (3), May 1970, pp. 338-345.

[6] Takeshita, O. Y. and D. J. Costello, Jr., “New Classes Of Algebraic Interleavers for
Turbo-Codes,” Proc. 1998 IEEE International Symposium on Information Theory,
Boston, Aug. 16–21, 1998. pp. 419.

6-170

 Digital Modulation

Digital Modulation

In most media for communication, only a fixed range of frequencies is available for
transmission. One way to communicate a message signal whose frequency spectrum
does not fall within that fixed frequency range, or one that is otherwise unsuitable
for the channel, is to alter a transmittable signal according to the information in your
message signal. This alteration is called modulation, and it is the modulated signal that
you transmit. The receiver then recovers the original signal through a process called
demodulation.

The sections of this chapter are as follows.

In this section...

“Digital Modulation Features” on page 6-171
“Signals and Delays” on page 6-177
“PM Modulation” on page 6-186
“AM Modulation” on page 6-187
“CPM Modulation” on page 6-193
“Exact LLR Algorithm” on page 6-196
“Approximate LLR Algorithm” on page 6-197
“Delays in Digital Modulation” on page 6-197
“Selected Bibliography for Digital Modulation” on page 6-199

Digital Modulation Features

• “Modulation Techniques” on page 6-171
• “Baseband and Passband Simulation” on page 6-175
• “Modulation Terminology” on page 6-176
• “Representing Digital Signals” on page 6-176

Modulation Techniques

The figure below shows the modulation techniques that Communications System Toolbox
supports for digital data. All the methods at the far right are implemented in library
blocks.

6-171

6 System Design

Pulse amplitude modulation (PAM)

Quadrature amplitude modulation (QAM)

Phase shift keying (PSK)

Di�erential phase shift keying (DPSK)

O�set phase shift keying (OPSK)

Frequency shift keying (FSK)

Gaussian minimum shift keying (GMSK)

Minimum shift keying (MSK)

Continuous phase frequency shift keying (CPFSK)

PSK

QAM

Amplitude

modulation

Phase

modulation

Frequency

modulation

Continuous

phase

modulation

Trellis-coded

modulation

Modulation

methods for

digital data

Like analog modulation, digital modulation alters a transmittable signal according
to the information in a message signal. However, in this case, the message signal is
restricted to a finite set. Using this product, you can modulate or demodulate signals
using various digital modulation techniques. You can also plot signal constellations.
Modulation functions output the complex envelope of the modulated signal.

Note: The modulation and demodulation functions do not perform pulse shaping or
filtering. See “Combine Pulse Shaping and Filtering with Modulation” on page 6-192
for more information about filtering.

The available methods of modulation depend on whether the input signal is analog or
digital. The tables below show the modulation techniques that Communications System
Toolbox software supports for analog and digital signals, respectively.

Analog Modulation Method Acronym Function or Method

Amplitude modulation
(suppressed or transmitted
carrier)

AM ammod, amdemod

Frequency modulation FM fmmod, fmdemod
Phase modulation PM pmmod, pmdemod

6-172

 Digital Modulation

Analog Modulation Method Acronym Function or Method

Single sideband amplitude
modulation

SSB ssbmod, ssbdemod

Digital Modulation Method Acronym System object

Differential phase shift
keying modulation

DPSK comm.DPSKDemodulatorSystem
object,
comm.DPSKModulator

System object
Frequency shift keying
modulation

FSK comm.FSKDemodulator
System object,
comm.FSKModulator System
object,

General Quadrature
amplitude modulation

General QAM comm.GeneralQAMDemodulator

System object,
comm.GeneralQAMModulator

System object
Minimum shift keying
modulation

MSK comm.MSKDemodulator

System object,
comm.MSKModulator

System object
Offset quadrature phase
shift keying modulation

OQPSK comm.OQPSKDemodulator

System object,
comm.OQPSKModulator

System object
Phase shift keying
modulation

PSK comm.PSKDemodulator

System object,
comm.PSKModulator

System object
Pulse amplitude modulation PAM comm.PAMDemodulator

System object,
comm.PAMModulator

System object

6-173

6 System Design

Accessing Digital Modulation Blocks

Open the Modulation library by double-clicking the icon in the main block library. Then
open the Digital Baseband sublibrary by double-clicking its icon in the Modulation
library.

The Digital Baseband library has sublibraries of its own. Open each of these sublibraries
by double-clicking the icon listed in the table below.

Kind of Modulation Icon in Digital Baseband Library

Amplitude modulation AM
Phase modulation PM
Frequency modulation FM
Continuous phase modulation CPM
Trellis-coded modulation TCM

Some digital modulation sublibraries contain blocks that implement special cases of a
more general technique and are, in fact, special cases of a more general block. These
special-case blocks use the same computational code that their general counterparts
use, but provide an interface that is either simpler or more suitable for the special
case. The following table lists special-case modulators, their general counterparts,
and the conditions under which the two are equivalent. The situation is analogous for
demodulators.

General and Specific Blocks

General Modulator Specific Modulator Specific Conditions

General QAM

Modulator

Baseband

Rectangular QAM

Modulator Baseband

Predefined constellation
containing 2K points on a
rectangular lattice

BPSK Modulator Baseband M-ary number parameter is 2.M-PSK Modulator

Baseband QPSK Modulator Baseband M-ary number parameter is 4.
DBPSK Modulator Baseband M-ary number parameter is 2.M-DPSK Modulator

Baseband DQPSK Modulator Baseband M-ary number parameter is 4.
CPM Modulator

Baseband

GMSK Modulator Baseband M-ary number parameter is
2, Frequency pulse shape
parameter is Gaussian.

6-174

 Digital Modulation

General Modulator Specific Modulator Specific Conditions

MSK Modulator Baseband M-ary number parameter is
2, Frequency pulse shape
parameter is Rectangular,
Pulse length parameter is 1.

CPFSK Modulator Baseband Frequency pulse shape
parameter is Rectangular,
Pulse length parameter is 1.

Rectangular QAM TCM

Encoder

Predefined signal constellation
containing 2K points on a
rectangular lattice

General TCM

Encoder

M-PSK TCM Encoder Predefined signal constellation
containing 2K points on a circle

Furthermore, the CPFSK Modulator Baseband block is similar to the M-FSK
Modulator Baseband block, when the M-FSK block uses continuous phase transitions.
However, the M-FSK features of this product differ from the CPFSK features in their
mask interfaces and in the demodulator implementations.

Baseband and Passband Simulation

For a given modulation technique, two ways to simulate modulation techniques are
called baseband and passband. Baseband simulation, also known as the lowpass
equivalent method, requires less computation. This product supports baseband
simulation for digital modulation and passband simulation for analog modulation.

Baseband Modulated Signals Defined

If you use baseband modulation to produce the complex envelope y of the modulation of
a message signal x, then y is a complex-valued signal that is related to the output of a
passband modulator. If the modulated signal has the waveform

Y t f t Y t f tc c1 22 2()cos() ()sin() ,p q p q+ - +

where fc is the carrier frequency and θ is the carrier signal's initial phase, then a
baseband simulation recognizes that this equals the real part of

[(() ())]exp() .Y t jY t e j f tj
c1 2 2+

q
p

6-175

6 System Design

and models only the part inside the square brackets. Here j is the square root of -1. The
complex vector y is a sampling of the complex signal

(() ()) .Y t jY t e j
1 2+

q

If you prefer to work with passband signals instead of baseband signals, then you can
build functions that convert between the two. Be aware that passband modulation tends
to be more computationally intensive than baseband modulation because the carrier
signal typically needs to be sampled at a high rate.

Modulation Terminology

Modulation is a process by which a carrier signal is altered according to information
in a message signal. The carrier frequency, denoted Fc, is the frequency of the carrier
signal. The sampling rate is the rate at which the message signal is sampled during the
simulation.

The frequency of the carrier signal is usually much greater than the highest frequency
of the input message signal. The Nyquist sampling theorem requires that the simulation
sampling rate Fs be greater than two times the sum of the carrier frequency and the
highest frequency of the modulated signal in order for the demodulator to recover the
message correctly.

Representing Digital Signals

To modulate a signal using digital modulation with an alphabet having M symbols, start
with a real message signal whose values are integers from 0 to M-1. Represent the signal
by listing its values in a vector, x. Alternatively, you can use a matrix to represent a
multichannel signal, where each column of the matrix represents one channel.

For example, if the modulation uses an alphabet with eight symbols, then the vector
[2 3 7 1 0 5 5 2 6]' is a valid single-channel input to the modulator. As a
multichannel example, the two-column matrix

[2 3;

 3 3;

 7 3;

 0 3;]

defines a two-channel signal in which the second channel has a constant value of 3.

6-176

 Digital Modulation

Signals and Delays

All digital modulation blocks process only discrete-time signals and use the baseband
representation. The data types of inputs and outputs are depicted in the following figure.

real Digital
Modulator

complex Digital
Demodulator

real

Note If you want to separate the in-phase and quadrature components of the complex
modulated signal, use the Complex to Real-Imag block in the Simulink Math
Operations library.

Integer-Valued Signals and Binary-Valued Signals

Some digital modulation blocks can accept either integer-valued or binary–valued
signals. The corresponding demodulation blocks can output either integers or groups
of individual bits that represent integers. This section describes how modulation
blocks process integer or binary inputs; the case for demodulation blocks is the reverse.
You should note that modulation blocks have an Input type parameter and that
demodulation blocks have an Output type parameter.

When you set the Input type parameter to Integer, the block accepts integer values
between 0 and M-1. M represents the M-ary number block parameter.

When you set the Input type parameter to Bit, the block accepts binary-valued inputs
that represent integers. The block collects binary-valued signals into groups of K =
log2(M) bits

where

K represents the number of bits per symbol.

The input vector length must be an integer multiple of K. In this configuration, the block
accepts a group of K bits and maps that group onto a symbol at the block output. The
block outputs one modulated symbol for each group of K bits.

6-177

6 System Design

Constellation Ordering (or Symbol Set Ordering)

Depending on the modulation scheme, the Constellation ordering or Symbol
set ordering parameter indicates how the block maps a group of K input bits to
a corresponding symbol. When you set the parameter to Binary, the block maps
[u(1) u(2) ... u(K)] to the integer

u i
K i

i

K

()2
1

-

=

Â

and assumes that this integer is the input value. u(1) is the most significant bit.

If you set M = 8, Constellation ordering (or Symbol set ordering) to Binary, and the
binary input word is [1 1 0], the block converts [1 1 0] to the integer 6. The block produces
the same output when the input is 6 and the Input type parameter is Integer.

When you set Constellation ordering (or Symbol set ordering) to Gray, the block
uses a Gray-coded arrangement and assigns binary inputs to points of a predefined Gray-
coded signal constellation. The predefined M-ary Gray-coded signal constellation assigns
the binary representation

M = 8; P = [0:M-1]';

de2bi(bitxor(P,floor(P/2)), log2(M),'left-msb')

to the Pth integer.

The following tables show the typical Binary to Gray mapping for M = 8.

Binary to Gray Mapping for Bits

Binary Code Gray Code

000 000
001 001
010 011
011 010
100 110
101 111

6-178

 Digital Modulation

Binary Code Gray Code

110 101
111 100

Gray to Binary Mapping for Integers

Binary Code Gray Code

0 0
1 1
2 3
3 2
4 6
5 7
6 5
7 4

Gray Encoding a Modulated Signal

For the PSK, DPSK, FSK, QAM, and PAM modulation types, Gray constellations are
obtained by selecting the Gray parameter in the corresponding modulation function or
method.

For modulation objects, you can set the symbol order property to Gray to obtain Gray-
encoded modulation.

The following example demonstrates use of the symbol order property. The Scatter
plot shows the modulated symbols are Gray-encoded.

% Create 8-PSK Gray encoded modulator

hMod = comm.PSKModulator('ModulationOrder',8, ...

 'SymbolMapping','Gray','PhaseOffset',0);

% Create a scatter plot

constellation(hMod)

6-179

6 System Design

For modulation functions, set the symbol order argument to Gray.

Looking at the map above, notice that this is indeed a Gray-encoded map; all adjacent
elements differ by only one bit.

6-180

 Digital Modulation

Delays From Digital Modulation

Digital modulation and demodulation blocks sometimes incur delays between their
inputs and outputs, depending on their configuration and on properties of their signals.
The following table lists sources of delay and the situations in which they occur.

Delays Resulting from Digital Modulation or Demodulation

Modulation or
Demodulation Type

Situation in Which Delay Occurs Amount of Delay

FM demodulator Sample-based processing One output period
Multirate processing, and the model uses
a variable-step solver or a fixed-step solver
with the Tasking Mode parameter set to
SingleTasking

D = Traceback length parameter

D+1 output periodsAll demodulators in
CPM sublibrary

Single-rate processing, D = Traceback
depth parameter

D output periods

Single-rate processing One output period
Multirate processing, and the model uses
a fixed-step solver with Tasking Mode
parameter set to Auto or MultiTasking.

Two output periods
OQPSK demodulator

Multirate processing processing, and
the model uses a variable-step solver or
the Tasking Mode parameter is set to
SingleTasking.

One output period

All decoders in TCM
sublibrary

Operation mode set to Continuous, Tr
= Traceback depth parameter, and code
rate k/n

Tr*k output bits

As a result of delays, data that enters a modulation or demodulation block at time T
appears in the output at time T+delay. In particular, if your simulation computes error
statistics or compares transmitted with received data, it must take the delay into account
when performing such computations or comparisons.

6-181

6 System Design

First Output Sample in DPSK Demodulation

In addition to the delays mentioned above, the M-DPSK, DQPSK, and DBPSK
demodulators produce output whose first sample is unrelated to the input. This is related
to the differential modulation technique, not the particular implementation of it.

Delays from Demodulation

For an example that illustrates delays from demodulation, see the Delays from
Demodulation on page 6-198 example.

Upsample Signals and Rate Changes

Some digital modulation blocks can output an upsampled version of the modulated
signal, while their corresponding digital demodulation blocks can accept an upsampled
version of the modulated signal as input. In both cases, the Rate options parameter
represents the upsampling factor, which must be a positive integer. Depending on
whether the input signal is single-rate mode or multirate mode, the block either changes
the signal's vector size or its sample time, as the following table indicates. Only the
OQPSK blocks deviate from the information in the table, in that S is replaced by 2S in
the scaling factors.

Process Upsampled Modulated Data (Except OQPSK Method)

Computation Type Input Status Result

Modulation Single-rate processing Output vector length is S
times the number of integers
or binary words in the input
vector. Output sample time
equals the input sample
time.

Modulation Multirate processing Output vector is a scalar.
Output sample time is 1/S
times the input sample time.

Demodulation Single-rate processing Number of integers or binary
words in the output vector
is 1/S times the number of
samples in the input vector.
Output sample time equals
the input sample time.

6-182

 Digital Modulation

Computation Type Input Status Result

Demodulation Multirate processing Output signal contains one
integer or one binary word.
Output sample time is S
times the input sample time.

Furthermore, if S > 1 and
the demodulator is from the
AM, PM, or FM sublibrary,
the demodulated signal
is delayed by one output
sample period. There is
no delay if S = 1 or if the
demodulator is from the
CPM sublibrary.

Illustrations of Size or Rate Changes

The following schematics illustrate how a modulator (other than OQPSK) upsamples
a triplet of frame-based and sample-based integers. In both cases, the Samples per
symbol parameter is 2.

6-183

6 System Design

Upsample Output: Single-Rate Processing

Upsample Output: Multirate Processing

Scalar input and output

Column vector input and output

The following schematics illustrate how a demodulator (other than OQPSK or one from
the CPM sublibrary) processes three doubly sampled symbols using both frame-based
and sample-based inputs. In both cases, the Samples per symbol parameter is 2. The
sample-based schematic includes an output delay of one sample period.

6-184

 Digital Modulation

Upsampled Input: Single Rate Processing

Column vectors

Upsampled Input: Multirate Processing

6-185

6 System Design

PM Modulation

DQPSK Signal Constellation Points and Transitions

The model below plots the output of the DQPSK Modulator Baseband block. The image
shows the possible transitions from each symbol in the DQPSK signal constellation to the
next symbol.

To open this model enter doc_dqpsk_plot at the MATLAB command line. To build the
model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of the Comm
Sources library

• Set M-ary number to 4.
• Set Initial seed to any positive integer scalar, preferably the output of the

randseed function.
• Set Sample time to .01.

• DQPSK Modulator Baseband, in the PM sublibrary of the Digital Baseband
sublibrary of Modulation

• Complex to Real-Imag, in the Simulink Math Operations library
• XY Graph, in the Simulink Sinks library

Use the blocks' default parameters unless otherwise instructed. Connect the blocks as
in the figure above. Running the model produces the following plot. The plot reflects the
transitions among the eight DQPSK constellation points.

6-186

 Digital Modulation

This plot illustrates π/4-DQPSK modulation, because the default Phase offset
parameter in the DQPSK Modulator Baseband block is pi/4. To see how the phase offset
influences the signal constellation, change the Phase offset parameter in the DQPSK
Modulator Baseband block to pi/8 or another value. Run the model again and observe
how the plot changes.

AM Modulation

Rectangular QAM Modulation and Scatter Diagram

The model below uses the M-QAM Modulator Baseband block to modulate random data.
After passing the symbols through a noisy channel, the model produces a scatter diagram
of the noisy data. The diagram suggests what the underlying signal constellation looks
like and shows that the noise distorts the modulated signal from the constellation.

To open this model, enter doc_qam_scatter at the MATLAB command line. To build
the model, gather and configure these blocks:

6-187

6 System Design

• Random Integer Generator, in the Random Data Sources sublibrary of the Comm
Sources library

• Set M-ary number to 16.
• Set Initial seed to any positive integer scalar, preferably the output of the

randseed function.
• Set Sample time to .1.

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital
Baseband sublibrary of Modulation

• Set Normalization method to Peak Power.
• AWGN Channel, in the Channels library

• Set Es/No to 20.
• Set Symbol period to .1.

• Constellation Diagram, in the Comm Sinks library

• Set Symbols to display to 160.

Connect the blocks as in the figure. From the model window's Simulation menu, select
Model Configuration parameters. In the Configuration Parameters dialog box, set
Stop time to 250. Running the model produces a scatter diagram like the following one.
Your plot might look somewhat different, depending on your Initial seed value in the
Random Integer Generator block. Because the modulation technique is 16-QAM, the
plot shows 16 clusters of points. If there were no noise, the plot would show the 16 exact
constellation points instead of clusters around the constellation points.

6-188

 Digital Modulation

Compute the Symbol Error Rate

The example generates a random digital signal, modulates it, and adds noise. Then it
creates a scatter plot, demodulates the noisy signal, and computes the symbol error rate.

% Create a random digital message

M = 16; % Alphabet size

x = randi([0 M-1],5000,1); % Random symbols

% Use 16-QAM modulation.

hMod = comm.RectangularQAMModulator('ModulationOrder',M);

hDemod = comm.RectangularQAMDemodulator('ModulationOrder',M);

% Create a constellation diagram object.

cpts = constellation(hMod);

hConst = comm.ConstellationDiagram('ReferenceConstellation',cpts, ...

 'XLimits',[-4 4],'YLimits',[-4 4]);

% Apply 16-QAM modulation.

y = step(hMod,x);

% Transmit signal through an AWGN channel.

ynoisy = awgn(y,15,'measured');

% Create constellation diagram from noisy data.

step(hConst,ynoisy)

% Demodulate ynoisy to recover the message.

z = step(hDemod,ynoisy);

% Check symbol error rate.

[num,rt] = symerr(x,z)

%%

% ==

% Documentation example from

% "Constellation for 16-PSK"

% in modulation.xml

% begindocexample 16psk_const

% Use 16-PSK modulation with no phase offset and binary symbol mapping.

hMod = comm.PSKModulator(16,0,'SymbolMapping','binary');

% Create a scatter plot

6-189

6 System Design

constellation(hMod)

% enddocexample 16psk_const

%%

% ==

% Documentation example from

% "Constellation for 32-QAM"

% in modulation.xml

% Example: Plotting Signal Constellations

% Constellation for 32-QAM

% Copyright 2003 The MathWorks, Inc.

close all;

% begindocexample 32qam_const

% Create 32-QAM modulator with binary symbol mapping

hMod = comm.RectangularQAMModulator(32,'SymbolMapping','binary');

% Create a scatter plot

constellation(hMod)

% enddocexample 32qam_const

doctouchupfigure(gcf,1);

%%

% ==

% Documentation example from

% "Gray-Coded Signal Constellation"

% in modulation.xml

% begindocexample graycoded_const

% Create 8-QAM Gray encoded modulator

hMod = comm.RectangularQAMModulator(8);

% Create a scatter plot

constellation(hMod)

% enddocexample graycoded_const

The output and scatter plot follow. Your numerical results and plot might vary, because
the example uses random numbers.

num =

6-190

 Digital Modulation

 83

rt =

 0.0166

The scatter plot does not look exactly like a signal constellation. Where the signal
constellation has 16 precisely located points, the noise causes the scatter plot to have a
small cluster of points approximately where each constellation point would be.

6-191

6 System Design

Combine Pulse Shaping and Filtering with Modulation

Modulation is often followed by pulse shaping, and demodulation is often preceded by a
filtering or an integrate-and-dump operation. This section presents an example involving
rectangular pulse shaping. For an example that uses raised cosine pulse shaping, see
“Pulse Shaping Using a Raised Cosine Filter” on page 14-7.

Rectangular Pulse Shaping

Rectangular pulse shaping repeats each output from the modulator a fixed number of
times to create an upsampled signal. Rectangular pulse shaping can be a first step or an
exploratory step in algorithm development, though it is less realistic than other kinds
of pulse shaping. If the transmitter upsamples the modulated signal, then the receiver
should downsample the received signal before demodulating. The “integrate and dump”
operation is one way to downsample the received signal.

The code below uses the rectpulse function for rectangular pulse shaping at the
transmitter and the intdump function for downsampling at the receiver.

M = 16; % Alphabet size

x = randi([0 M-1],5000,1); % Message signal

Nsamp = 4; % Oversampling rate

% Use 16-QAM modulation.

hMod = comm.RectangularQAMModulator;

hDemod = comm.RectangularQAMDemodulator;

% Modulate

y = step(hMod,x);

% Follow with rectangular pulse shaping.

ypulse = rectpulse(y,Nsamp);

% Transmit signal through an AWGN channel.

ynoisy = awgn(ypulse,15,'measured');

% Downsample at the receiver.

ydownsamp = intdump(ynoisy,Nsamp);

% Demodulate to recover the message.

z = step(hDemod,ydownsamp);

6-192

 Digital Modulation

CPM Modulation

Phase Tree for Continuous Phase Modulation

This example plots a phase tree associated with a continuous phase modulation scheme.
A phase tree is a diagram that superimposes many curves, each of which plots the phase
of a modulated signal over time. The distinct curves result from different inputs to the
modulator.

This example uses the CPM Modulator Baseband block for its numerical computations.
The block is configured so that it uses a raised cosine filter pulse shape. The example
also illustrates how you can use Simulink and MATLAB together. The example uses
MATLAB commands to run a series of simulations with different input signals, to collect
the simulation results, and to plot the full data set.

Note In contrast to this example's approach using both MATLAB and Simulink, the
commcpmphasetree example produces a phase tree using a Simulink model without
additional lines of MATLAB code.

The first step of this example is to build the model. To open the completed model, click
here in the MATLAB Help browser. To build the model, gather and configure these
blocks:

• Constant, in the Simulink Commonly Used Blocks library

• Set Constant value to s (which will appear in the MATLAB workspace).
• Set Sampling mode to Frame-based.
• Set Frame period to 1.

• CPM Modulator Baseband

6-193

6 System Design

• Set M-ary number to 2.
• Set Modulation index to 2/3.
• Set Frequency pulse shape to Raised Cosine.
• Set Pulse length to 2.

• To Workspace, in the Simulink Sinks library

• Set Variable name to x.
• Set Save format to Array.

Do not run the model, because the variable s is not yet defined in the MATLAB
workspace. Instead, save the model to a folder on your MATLAB path, using the filename
doc_phasetree.

The second step of this example is to execute the following MATLAB code:

% Parameters from the CPM Modulator Baseband block

M_ary_number = 2;

modulation_index = 2/3;

pulse_length = 2;

samples_per_symbol = 8;

L = 5; % Symbols to display

pmat = [];

for ip_sig = 0:(M_ary_number^L)-1

 s = de2bi(ip_sig,L,M_ary_number,'left-msb');

 % Apply the mapping of the input symbol to the CPM

 % symbol 0 -> -(M-1), 1 -> -(M-2), etc.

 s = 2*s'+1-M_ary_number;

 sim('doc_phasetree', .9); % Run model to generate x.

 % Next column of pmat

 pmat(:,ip_sig+1) = unwrap(angle(x(:)));

end;

pmat = pmat/(pi*modulation_index);

t = (0:L*samples_per_symbol-1)'/samples_per_symbol;

plot(t,pmat); figure(gcf); % Plot phase tree.

This code defines the parameters for the CPM Modulator, applies symbol mapping, and
plots the results. Each curve represents a different instance of simulating the CPM
Modulator Baseband block with a distinct (constant) input signal.

6-194

 Digital Modulation

6-195

6 System Design

Exact LLR Algorithm

The log-likelihood ratio (LLR) is the logarithm of the ratio of probabilities of a 0 bit being
transmitted versus a 1 bit being transmitted for a received signal. The LLR for a bit b is
defined as:

L b
b r x y

b r x y
() log

Pr(| (,))

Pr(| (,))
= = =

= =
Ê

Ë
Á

ˆ

¯
˜

0

1

Assuming equal probability for all symbols, the LLR for an AWGN channel can be
expressed as:

L b

e

e

x s y s

s S

x s y s

s

x y

x y

() log

() ()

() ()

=

- - + -()
Œ

- - + -()

Â
1

1

2

2 2

0

2

2 2

s

s

ŒŒ
Â

Ê

Ë

Á
Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜
˜

S1

where the variables represent the values shown in the following table.

Variable What the Variable Represents

r Received signal with coordinates (x, y).

b Transmitted bit (one of the K bits in an M-ary symbol, assuming all
M symbols are equally probable.

S
0

Ideal symbols or constellation points with bit 0, at the given bit
position.

S
1

Ideal symbols or constellation points with bit 1, at the given bit
position.

s
x

In-phase coordinate of ideal symbol or constellation point.

sy
Quadrature coordinate of ideal symbol or constellation point.

s
2 Noise variance of baseband signal.

s
x

2 Noise variance along in-phase axis.

6-196

 Digital Modulation

Variable What the Variable Represents

s y

2 Noise variance along quadrature axis.

Note: Noise components along the in-phase and quadrature axes are assumed to be

independent and of equal power (i.e., s s sx y

2 2 2
2= =).

Approximate LLR Algorithm

Approximate LLR is computed by taking into consideration only the nearest constellation
point to the received signal with a 0 (or 1) at that bit position, rather than all the
constellation points as done in exact LLR. It is defined as [8]:

L b x s y s x s y s
s S

x y
s S

x y
() min () () min () ()= - - + -() - - + -

Œ Œ

1
2

2 2 2 2

0 1s
 (()()

Delays in Digital Modulation

Digital modulation and demodulation blocks sometimes incur delays between their
inputs and outputs, depending on their configuration and on properties of their signals.
The following table lists sources of delay and the situations in which they occur.

Delays Resulting from Digital Modulation or Demodulation

Modulation or
Demodulation Type

Situation in Which Delay Occurs Amount of Delay

FM demodulator Sample-based processing One output period
Multirate processing, and the model uses
a variable-step solver or a fixed-step solver
with the Tasking Mode parameter set to
SingleTasking

D = Traceback length parameter

D+1 output periodsAll demodulators in
CPM sublibrary

Single-rate processing, D = Traceback
depth parameter

D output periods

OQPSK demodulator Single-rate processing One output period

6-197

6 System Design

Modulation or
Demodulation Type

Situation in Which Delay Occurs Amount of Delay

Multirate processing, and the model uses
a fixed-step solver with Tasking Mode
parameter set to Auto or MultiTasking.

Two output periods

Multirate processing processing, and
the model uses a variable-step solver or
the Tasking Mode parameter is set to
SingleTasking.

One output period

All decoders in TCM
sublibrary

Operation mode set to Continuous, Tr
= Traceback depth parameter, and code
rate k/n

Tr*k output bits

As a result of delays, data that enters a modulation or demodulation block at time T
appears in the output at time T+delay. In particular, if your simulation computes error
statistics or compares transmitted with received data, it must take the delay into account
when performing such computations or comparisons.

First Output Sample in DPSK Demodulation

In addition to the delays mentioned above, the M-DPSK, DQPSK, and DBPSK
demodulators produce output whose first sample is unrelated to the input. This is related
to the differential modulation technique, not the particular implementation of it.

Example: Delays from Demodulation

Demodulation in the model below causes the demodulated signal to lag, compared to the
unmodulated signal. When computing error statistics, the model accounts for the delay
by setting the Error Rate Calculation block's Receive delay parameter to 0. If the
Receive delay parameter had a different value, then the error rate showing at the top of
the Display block would be close to 1/2.

6-198

 Digital Modulation

To open this model , enter doc_oqpsk_modulation_delay at the MATLAB command
line. To build the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of the Comm
Sources library

• Set M-ary number to 4.
• Set Initial seed to any positive integer scalar.

• OQPSK Modulator Baseband, in the PM sublibrary of the Digital Baseband
sublibrary of Modulation

• AWGN Channel, in the Channels library

• Set Es/No to 6.
• OQPSK Demodulator Baseband, in the PM sublibrary of the Digital Baseband

sublibrary of Modulation
• Error Rate Calculation, in the Comm Sinks library

• Set Receive delay to 1.
• Set Computation delay to 0.
• Set Output data to Port.

• Display, in the Simulink Sinks library

• Drag the bottom edge of the icon to make the display big enough for three entries.

Connect the blocks as shown above. From the model window's Simulation, select Model
Configuration parameters. In the Configuration Parameters dialog box, set Stop
time to 1000. Then run the model and observe the error rate at the top of the Display
block's icon. Your error rate will vary depending on your Initial seed value in the
Random Integer Generator block.

Selected Bibliography for Digital Modulation

[1] Jeruchim, M. C., P. Balaban, and K. S. Shanmugan, Simulation of Communication
Systems, New York, Plenum Press, 1992.

[2] Proakis, J. G., Digital Communications, 3rd ed., New York, McGraw-Hill, 1995.

[3] Sklar, B., Digital Communications: Fundamentals and Applications, Englewood
Cliffs, NJ, Prentice-Hall, 1988.

6-199

6 System Design

[4] Anderson, J. B., T. Aulin, and C.-E. Sundberg, Digital Phase Modulation, New York,
Plenum Press, 1986.

[5] Biglieri, E., D. Divsalar, P.J. McLane, and M.K. Simon, Introduction to Trellis-Coded
Modulation with Applications, New York, Macmillan, 1991.

[6] Pawula, R.F., “On M-ary DPSK Transmission Over Terrestrial and Satellite
Channels,” IEEE Transactions on Communications, Vol. COM-32, July 1984, pp.
752–761.

[7] Smith, J. G., “Odd-Bit Quadrature Amplitude-Shift Keying,” IEEE Transactions on
Communications, Vol. COM-23, March 1975, pp. 385–389.

[8] Viterbi, A. J., “An Intuitive Justification and a Simplified Implementation of the
MAP Decoder for Convolutional Codes,” IEEE Journal on Selected Areas in
Communications, vol. 16, No. 2, pp 260–264, Feb. 1998

6-200

 Analog Passband Modulation

Analog Passband Modulation
In this section...

“Analog Modulation Features” on page 6-201
“Represent Signals for Analog Modulation” on page 6-202
“Sampling Issues in Analog Modulation” on page 6-205
“Filter Design Issues” on page 6-205

Analog Modulation Features

In most communication medium, only a fixed range of frequencies is available for
transmission. One way to communicate a message signal whose frequency spectrum
does not fall within that fixed frequency range, or one that is otherwise unsuitable
for the channel, is to alter a transmittable signal according to the information in your
message signal. This alteration is called modulation, and it is the modulated signal that
you transmit. The receiver then recovers the original signal through a process called
demodulation. This section describes how to modulate and demodulate analog signals
using blocks.

Open the Modulation library by double-clicking its icon in the main Communications
System Toolbox block library. Then, open the Analog Passband sublibrary by double-
clicking its icon in the Modulation library.

The following figure shows the modulation techniques that Communications System
Toolbox supports for analog signals. As the figure suggests, some categories of techniques
include named special cases.

6-201

6 System Design

For a given modulation technique, two ways to simulate modulation techniques are
called baseband and passband. This product supports passband simulation for analog
modulation.

The modulation and demodulation blocks also let you control such features as the initial
phase of the modulated signal and post-demodulation filtering.

Represent Signals for Analog Modulation

Analog modulation blocks in this product process only sample-based scalar signals. The
input and output of the analog modulator and demodulator are all real signals.

All analog demodulators in this product produce discrete-time, not continuous-time,
output.

Representing Analog Signals Using MATLAB

To modulate an analog signal using MATLAB, start with a real message signal and a
sampling rate Fs in hertz. Represent the signal using a vector x, the entries of which
give the signal's values in time increments of 1/Fs. Alternatively, you can use a matrix
to represent a multichannel signal, where each column of the matrix represents one
channel.

For example, if t measures time in seconds, then the vector x below is the result of
sampling a sine wave 8000 times per second for 0.1 seconds. The vector y represents the
modulated signal.

Fs = 8000; % Sampling rate is 8000 samples per second.

Fc = 300; % Carrier frequency in Hz

t = [0:.1*Fs]'/Fs; % Sampling times for .1 second

x = sin(20*pi*t); % Representation of the signal

y = ammod(x,Fc,Fs); % Modulate x to produce y.

figure;

subplot(2,1,1); plot(t,x); % Plot x on top.

subplot(2,1,2); plot(t,y)% Plot y below.

6-202

 Analog Passband Modulation

As a multichannel example, the code below defines a two-channel signal in which one
channel is a sinusoid with zero initial phase and the second channel is a sinusoid with an
initial phase of pi/8.

Fs = 8000;

t = [0:.1*Fs]'/Fs;

x = [sin(20*pi*t), sin(20*pi*t+pi/8)];

Analog Modulation with Additive White Gaussian Noise (AWGN) Using MATLAB

This example illustrates the basic format of the analog modulation and demodulation
functions. Although the example uses phase modulation, most elements of this example
apply to other analog modulation techniques as well.

The example samples an analog signal and modulates it. Then it simulates an additive
white Gaussian noise (AWGN) channel, demodulates the received signal, and plots the
original and demodulated signals.

% Prepare to sample a signal for two seconds,

6-203

6 System Design

% at a rate of 100 samples per second.

Fs = 100; % Sampling rate

t = [0:2*Fs+1]'/Fs; % Time points for sampling

% Create the signal, a sum of sinusoids.

x = sin(2*pi*t) + sin(4*pi*t);

Fc = 10; % Carrier frequency in modulation

phasedev = pi/2; % Phase deviation for phase modulation

y = pmmod(x,Fc,Fs,phasedev); % Modulate.

y = awgn(y,10,'measured',103); % Add noise.

z = pmdemod(y,Fc,Fs,phasedev); % Demodulate.

% Plot the original and recovered signals.

figure; plot(t,x,'k-',t,z,'g-');

legend('Original signal','Recovered signal');

Other examples using analog modulation functions appear in the reference pages for
ammod, amdemod, ssbdemod, and fmmod.

6-204

 Analog Passband Modulation

Sampling Issues in Analog Modulation

The proper simulation of analog modulation requires that the Nyquist criterion be
satisfied, taking into account the signal bandwidth.

Specifically, the sample rate of the system must be greater than twice the sum of the
carrier frequency and the signal bandwidth.

Filter Design Issues

After demodulating, you might want to filter out the carrier signal. The particular filter
used, such as butter, cheby1, cheby2, and ellip, can be selected on the mask of the
demodulator block. Different filtering methods have different properties, and you might
need to test your application with several filters before deciding which is most suitable.

Varying Filter's Cutoff Frequency Using Simulink

In many situations, a suitable cutoff frequency is half the carrier frequency. Because
the carrier frequency must be higher than the bandwidth of the message signal, a cutoff
frequency chosen in this way properly filters out unwanted frequency components. If
the cutoff frequency is too high, the unwanted components may not be filtered out. If the
cutoff frequency is too low, it might narrow the bandwidth of the message signal.

The following example modulates a sawtooth message signal, demodulates the resulting
signal using a Butterworth filter, and plots the original and recovered signals. The
Butterworth filter is implemented within the SSB AM Demodulator Passband block.

To open this model , enter doc_filtercutoffs at the MATLAB command line.

This example generates the following output:

6-205

6 System Design

There is invariably a delay between a demodulated signal and the original received
signal. Both the filter order and the filter parameters directly affect the length of this
delay.

Other Filter Cutoffs

To see the effect of a lowpass filter with a higher cutoff frequency, set the Cutoff
frequency of the SSB AM Demodulator Passband block to 49, and run the simulation
again. The new result is shown below. The higher cutoff frequency allows the carrier
signal to interfere with the demodulated signal.

6-206

 Analog Passband Modulation

To see the effect of a lowpass filter with a lower cutoff frequency, set the Cutoff
frequency of the SSB AM Demodulator Passband block to 4, and run the simulation
again. The new result is shown in the following figure. The lower cutoff frequency
narrows the bandwidth of the demodulated signal.

6-207

6 System Design

Phase-Locked Loops

In this section...

“Phase-Locked Loop Features” on page 6-208
“Selected Bibliography for Synchronization” on page 6-210

Phase-Locked Loop Features

The Components sublibrary contains voltage-controlled oscillator (VCO) models as well
as phase-locked loop (PLL) models.

This section discusses these topics:

• “Voltage-Controlled Oscillator Blocks” on page 6-208
• “Overview of PLL Simulation” on page 6-208
• “Implementing an Analog Baseband PLL” on page 6-210
• “Implementing a Digital PLL” on page 6-210

For details about phase-locked loops, see the works listed in “Selected Bibliography for
Synchronization” on page 6-210.

Voltage-Controlled Oscillator Blocks

A voltage-controlled oscillator is one part of a phase-locked loop. The Continuous-
Time VCO and Discrete-Time VCO blocks implement voltage-controlled oscillators.
These blocks produce continuous-time and discrete-time output signals, respectively.
Each block's output signal is sinusoidal, and changes its frequency in response to the
amplitude variations of the input signal.

Overview of PLL Simulation

A phase-locked loop (PLL), when used in conjunction with other components, helps
synchronize the receiver. A PLL is an automatic control system that adjusts the phase of
a local signal to match the phase of the received signal. The PLL design works best for
narrowband signals.

A simple PLL consists of a phase detector, a loop filter, and a voltage-controlled oscillator
(VCO). For example, the following figure shows how these components are arranged for

6-208

 Phase-Locked Loops

an analog passband PLL. In this case, the phase detector is just a multiplier. The signal
e(t) is often called the error signal.

s(t)

S(t)

Filter
e(t)

VCO

The following table indicates the supported types of PLLs and the blocks that implement
them.

Supported PLLs in Components Library

Type of PLL Block

Analog passband PLL Phase-Locked Loop

Analog baseband PLL Baseband PLL

Linearized analog baseband PLL Linearized Baseband PLL

Digital PLL using a charge pump Charge Pump PLL

Different PLLs use different phase detectors, filters, and VCO characteristics. Some of
these attributes are built into the PLL blocks in this product, while others depend on
parameters that you set in the block mask:

• You specify the filter's transfer function in the block mask using the Lowpass
filter numerator and Lowpass filter denominator parameters. Each of these
parameters is a vector that lists the coefficients of the respective polynomial in order
of descending exponents of the variable s. To design a filter, you can use functions
such as butter, cheby1, and cheby2 in Signal Processing Toolbox.

• You specify the key VCO characteristics in the block mask. All four PLL blocks
use a VCO input sensitivity parameter. Some blocks also use VCO quiescent
frequency, VCO initial phase, and VCO output amplitude parameters.

• The phase detector for each of the PLL blocks is a feature that you cannot change
from the block mask.

6-209

6 System Design

Implementing an Analog Baseband PLL

Unlike passband models for a phase-locked loop, a baseband model does not depend on
a carrier frequency. This allows you to use a lower sampling rate in the simulation. Two
blocks implement analog baseband PLLs:

• Baseband PLL

• Linearized Baseband PLL

The linearized model and the nonlinearized model differ in that the linearized model uses
the approximation

sin () ()D Dq qt t() @

to simplify the computations. This approximation is close when Δθ(t) is near zero. Thus,
instead of using the input signal and the VCO output signal directly, the linearized PLL
model uses only their phases.

Implementing a Digital PLL

The charge pump PLL is a classical digital PLL. Unlike the analog PLLs mentioned
above, the charge pump PLL uses a sequential logic phase detector, which is also known
as a digital phase detector or a phase/frequency detector.

Selected Bibliography for Synchronization

[1] Gardner, F.M., “Charge-pump Phase-lock Loops,” IEEE Trans. on Communications,
Vol. 28, November 1980, pp. 1849–1858.

[2] Gardner, F.M., “Phase Accuracy of Charge Pump PLLs,” IEEE Trans. on
Communications, Vol. 30, October 1982, pp. 2362–2363.

[3] Gupta, S.C., “Phase Locked Loops,” Proceedings of the IEEE, Vol. 63, February 1975,
pp. 291–306.

[4] Lindsay, W.C. and C.M. Chie, “A Survey on Digital Phase-Locked Loops,” Proceedings
of the IEEE, Vol. 69, April 1981, pp. 410–431.

[5] Mengali, Umberto, and Aldo N. D'Andrea, Synchronization Techniques for Digital
Receivers, New York, Plenum Press, 1997.

6-210

 Phase-Locked Loops

[6] Meyr, Heinrich, and Gerd Ascheid, Synchronization in Digital Communications, Vol.
1, New York, John Wiley & Sons, 1990.

[7] Moeneclaey, Marc, and Geert de Jonghe, “ML-Oriented NDA Carrier Synchronization
for General Rotationally Symmetric Signal Constellations,” IEEE Transactions
on Communications, Vol. 42, No. 8, Aug. 1994, pp. 2531–2533.

[8] Rice, Michael. Digital Communications: A Discrete-Time Approach. Upper Saddle
River, NJ: Prentice Hall, 2009.

6-211

6 System Design

Equalization

In this section...

“Equalization Features” on page 6-212
“Equalize A Signal” on page 6-213
“Equalizer Structure” on page 6-214
“Adaptive Algorithms” on page 6-222
“MLSE Equalizers” on page 6-239
“Selected Bibliography for Equalizers” on page 6-246

Equalization Features

Time-dispersive channels can cause intersymbol interference (ISI), a form of distortion
that causes symbols to overlap and become indistinguishable by the receiver. For
example, in a multipath scattering environment, the receiver sees delayed versions of a
symbol transmission, which can interfere with other symbol transmissions. An equalizer
attempts to mitigate ISI and improve receiver performance. Communications System
Toolbox provides equalization capabilities using one or more Simulink blocks, System
objects, or MATLAB functions.

This product supports the following distinct classes of equalizers, each of which have a
different overall structure:

• Linear equalizers, a class that is further divided into these categories:

• Symbol-spaced equalizers
• Fractionally spaced equalizers (FSEs)

• Decision-feedback equalizers (DFEs)
• MLSE (Maximum-Likelihood Sequence Estimation) equalizers that uses the

Viterbi algorithm. To learn how to use the MLSE equalizer capabilities, see “MLSE
Equalizers” on page 6-239.

Linear and decision-feedback equalizers are adaptive equalizers that use an adaptive
algorithm when operating. For each of the adaptive equalizer classes listed above, this
toolbox supports these adaptive algorithms:

6-212

 Equalization

• Least mean square (LMS)
• Signed LMS, including these types: sign LMS, signed regressor LMS, and sign-sign

LMS
• Normalized LMS
• Variable-step-size LMS
• Recursive least squares (RLS)
• Constant modulus algorithm (CMA)

Several blocks from the Equalizers library implement adaptive equalizers, differing in
the equalizer structure and the type of adaptive algorithm that they use. In all cases,
you specify information about the equalizer structure (such as the number of taps),
the adaptive algorithm (such as the step size), and the signal constellation used by the
modulator in your model. You also specify an initial set of weights for the taps of the
equalizer; the block adaptively updates the weights throughout the simulation. For
adaptive algorithms other than CMA, the equalizer can adapt the weights in two modes:
training mode and decision-directed mode.

To learn how to use the adaptive equalizer capabilities, start with “Adaptive Algorithms”
on page 6-222. For more detailed background material, see the works listed in
“Selected Bibliography for Equalizers” on page 6-246.

Equalize A Signal

Equalizing a signal using Communications System Toolbox software involves these steps:

1 Create an equalizer object that describes the equalizer class and the adaptive
algorithm that you want to use. An equalizer object is a type of MATLAB variable
that contains information about the equalizer, such as the name of the equalizer
class, the name of the adaptive algorithm, and the values of the weights.

2 Adjust properties of the equalizer object, if necessary, to tailor it to your needs. For
example, you can change the number of weights or the values of the weights.

3 Apply the equalizer object to the signal you want to equalize, using the equalize
method of the equalizer object.

Equalize a Signal Using MATLAB

This code briefly illustrates the steps in the basic procedure above.

6-213

6 System Design

% Build a set of test data.

hMod = comm.BPSKModulator; % BPSKModulator System object

x = step(hMod,randi([0 1],1000,1)); % BPSK symbols

rxsig = conv(x,[1 0.8 0.3]); % Received signal

% Create an equalizer object.

eqlms = lineareq(8,lms(0.03));

% Change the reference tap index in the equalizer.

eqlms.RefTap = 4;

% Apply the equalizer object to a signal.

y = equalize(eqlms,rxsig,x(1:200));

In this example, eqlms is an equalizer object that describes a linear LMS equalizer
having eight weights and a step size of 0.03. At first, the reference tap index in the
equalizer has a default value, but assigning a new value to the property eqlms.RefTap
changes this index. Finally, the equalize command uses the eqlms object to equalize
the signal rxsig using the training sequence x(1:200).

Equalizer Structure

Decision-Feedback Equalizers

A decision-feedback equalizer is a nonlinear equalizer that contains a forward filter and a
feedback filter. The forward filter is similar to the linear equalizer described in “Symbol-
Spaced Equalizers” on page 6-215, while the feedback filter contains a tapped delay
line whose inputs are the decisions made on the equalized signal. The purpose of a DFE
is to cancel intersymbol interference while minimizing noise enhancement. By contrast,
noise enhancement is a typical problem with the linear equalizers described earlier.

The following schematic contains a fractionally spaced DFE with L forward weights and
N-L feedback weights. The forward filter is at the top and the feedback filter is at the
bottom. If K is 1, the result is a symbol-spaced DFE instead of a fractionally spaced DFE.

6-214

 Equalization

T/KInput

Weight
Setting

+

Output

T/KT/KT/K

Rate K/T

Rate 1/T

u1 u2 u3 uL

y

Decision
Device

d

w2 w3w1 wL

wL+2wN wL+1

T TTT
uN uL+2 uL+1

yd

Error
Calculation

e

Training

In each symbol period, the equalizer receives K input samples at the forward filter, as
well as one decision or training sample at the feedback filter. The equalizer then outputs
a weighted sum of the values in the forward and feedback delay lines, and updates the
weights to prepare for the next symbol period.

Note: The algorithm for the Weight Setting block in the schematic jointly optimizes the
forward and feedback weights. Joint optimization is especially important for the RLS
algorithm.

Symbol-Spaced Equalizers

A symbol-spaced linear equalizer consists of a tapped delay line that stores samples from
the input signal. Once per symbol period, the equalizer outputs a weighted sum of the
values in the delay line and updates the weights to prepare for the next symbol period.
This class of equalizer is called symbol-spaced because the sample rates of the input and
output are equal.

Below is a schematic of a symbol-spaced linear equalizer with N weights, where the
symbol period is T.

6-215

6 System Design

TInput

Weight
Setting

+ Output

TTT
u1 u2 u3 uL

y

Decision
Device

d

w2 w3w1 wL

yd

Error
Calculation

e Training

Updating the Set of Weights

The algorithms for the Weight Setting and Error Calculation blocks in the schematic are
determined by the adaptive algorithm chosen from the list in “Equalization Features” on
page 6-212. The new set of weights depends on these quantities:

• The current set of weights
• The input signal
• The output signal
• For adaptive algorithms other than CMA, a reference signal, d, whose characteristics

depend on the operation mode of the equalizer

Reference Signal and Operation Modes

The table below briefly describes the nature of the reference signal for each of the two
operation modes.

Operation Mode of Equalizer Reference Signal

Training mode Preset known transmitted sequence
Decision-directed mode Detected version of the output signal, denoted by yd

in the schematic

6-216

 Equalization

In typical applications, the equalizer begins in training mode to gather information about
the channel, and later switches to decision-directed mode.

Error Calculation

The error calculation operation produces a signal given by the expression below, where R
is a constant related to the signal constellation.

e
d y

y R y
=

-

-

 Algorithms other than CMA

 CMA ()
2

Ï
Ì
Ô

ÓÔ

Fractionally Spaced Equalizers

A fractionally spaced equalizer is a linear equalizer that is similar to a symbol-spaced
linear equalizer, as described in “Symbol-Spaced Equalizers” on page 6-215. By
contrast, however, a fractionally spaced equalizer receives K input samples before it
produces one output sample and updates the weights, where K is an integer. In many
applications, K is 2. The output sample rate is 1/T, while the input sample rate is K/T.
The weight-updating occurs at the output rate, which is the slower rate.

The following schematic illustrates a fractionally spaced equalizer.

T/KInput

Weight
Setting

+ Output

T/KT/KT/K

Rate K/T

Rate 1/T

u1 u2 u3 uL

y

Decision
Device

d

w2 w3w1 wL

yd

Error
Calculation

e Training

6-217

6 System Design

Implement LMS Linear Equalizer Using Simulink

This example illustrates the use of an LMS linear equalizer. The simulation transmits
a 16-QAM signal, modeling the channel using an FIR filter followed by additive white
Gaussian noise. The equalizer receives the signal from the channel and, as training
symbols, a subset of the modulator's output. The equalizer operates in training mode
at the beginning of each frame and switches to decision-directed mode when it runs out
of training symbols. The example contrasts the signals before and after equalization to
illustrate the effect of the equalizer.

To open this model, enter doc_lmseq at the MATLAB command line.

To build the model, gather and configure these blocks:

• Random Integer Generator, in the Random Data Sources sublibrary of the Comm
Sources library

6-218

 Equalization

• Set M-ary number to 16.
• Set Sample time to 1/1000.
• Select Frame-based outputs.
• Set Samples per frame to 1000.

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital
Baseband sublibrary of Modulation

• Set Normalization method to Average Power.
• Set Average power to 1.

• Discrete FIR Filter, in the DSP System Toolbox Filter Implementations
sublibrary of Filtering

• Set Filter structure to Direct form transposed.
• Set Coefficients to [1 -.3 .1 .2j].

• Submatrix, in the DSP System Toolbox Indexing sublibrary of Signal Management

• Set Ending row to Index.
• Set Ending row index to 100.

• AWGN Channel, in the Channels library

• Set Mode to Signal to noise ratio (SNR).
• Set SNR to 40.

• LMS Linear Equalizer

• Set Number of taps to 6.
• Clear the Mode input port, Output error, and Output weights check boxes.

• Two copies of Constellation Diagram, in the Comm Sinks library

• Set Symbols to display to 400 in each of the two copies.

Connect the blocks as in the figure. Running the simulation produces two scatter plots
that display the signal before and after equalization, respectively.

Scatter Plots in the Example

Throughout the simulation, the signal before equalization deviates noticeably from a 16-
QAM signal constellation, as below.

6-219

6 System Design

Early in the simulation, the equalizer does not appear to improve the scatter plot. In
fact, the equalizer is busy trying to adapt its weights appropriately. The following figure
shows the equalized signal very early in the simulation.

6-220

 Equalization

After some simulation time passes, the equalizer's weights work well on the received
signal. As a result, the equalized signal looks far more like a 16-QAM signal constellation
than the received signal does. The figure below shows the equalized signal in its steady
state.

6-221

6 System Design

Adaptive Algorithms

• “Adaptive Equalizer Functions” on page 6-222
• “Specify an Adaptive Algorithm” on page 6-223
• “Specify an Adaptive Equalizer” on page 6-225
• “Using Adaptive Equalizers” on page 6-228

This section provides an overview of the process you typically use in the MATLAB
environment to take advantage of the adaptive equalizer capabilities. The MLSE
equalizer has a different interface, described in “MLSE Equalizers” on page 6-239.

Adaptive Equalizer Functions

Keeping the basic procedure in mind, read other portions of this chapter to learn more
details about

• How to create objects that represent different classes of adaptive equalizers and
different adaptive algorithms

• How to adjust properties of an adaptive equalizer or properties of an adaptive
algorithm

6-222

 Equalization

• How to equalize signals using an adaptive equalizer object

Specify an Adaptive Algorithm

• “Choose an Adaptive Algorithm” on page 6-223
• “Indicating a Choice of Adaptive Algorithm” on page 6-223
• “Access Properties of an Adaptive Algorithm” on page 6-224

Choose an Adaptive Algorithm

Configuring an equalizer involves choosing an adaptive algorithm and indicating your
choice when creating an equalizer object in the MATLAB environment.

Although the best choice of adaptive algorithm might depend on your individual
situation, here are some generalizations that might influence your choice:

• The LMS algorithm executes quickly but converges slowly, and its complexity grows
linearly with the number of weights.

• The RLS algorithm converges quickly, but its complexity grows with the square of the
number of weights, roughly speaking. This algorithm can also be unstable when the
number of weights is large.

• The various types of signed LMS algorithms simplify hardware implementation.
• The normalized LMS and variable-step-size LMS algorithms are more robust to

variability of the input signal's statistics (such as power).
• The constant modulus algorithm is useful when no training signal is available, and

works best for constant modulus modulations such as PSK.

However, if CMA has no additional side information, it can introduce phase
ambiguity. For example, CMA might find weights that produce a perfect QPSK
constellation but might introduce a phase rotation of 90, 180, or 270 degrees.
Alternatively, differential modulation can be used to avoid phase ambiguity.

Details about the adaptive algorithms are in the references listed in “Selected
Bibliography for Equalizers” on page 6-246.
Indicating a Choice of Adaptive Algorithm

After you have chosen the adaptive algorithm you want to use, indicate your choice
when creating the equalizer object mentioned in “Equalize A Signal” on page 6-213.
The functions listed in the table below provide a way to indicate your choice of adaptive
algorithm.

6-223

6 System Design

Adaptive Algorithm Function Type of Adaptive Algorithm

lms Least mean square (LMS)
signlms Signed LMS, signed regressor LMS, sign-

sign LMS
normlms Normalized LMS
varlms Variable-step-size LMS
rls Recursive least squares (RLS)
cma Constant modulus algorithm (CMA)

Two typical ways to use a function from the table are as follows:

• Use the function in an inline expression when creating the equalizer object.

For example, the code below uses the lms function inline when creating an equalizer
object.

eqlms = lineareq(10,lms(0.003));

• Use the function to create a variable in the MATLAB workspace and then use that
variable when creating the equalizer object. The variable is called an adaptive
algorithm object.

For example, the code below creates an adaptive algorithm object named alg that
represents the adaptive algorithm, and then uses alg when creating an equalizer
object.

alg = lms(0.003);

eqlms = lineareq(10,alg);

Note: To create an adaptive algorithm object by duplicating an existing one and then
changing its properties, see the important note in “Duplicating and Copying Objects”
on page 6-226 about the use of copy versus the = operator.

In practice, the two ways are equivalent when your goal is to create an equalizer object or
to equalize a signal.
Access Properties of an Adaptive Algorithm

The adaptive algorithm functions not only provide a way to indicate your choice of
adaptive algorithm, but they also let you specify certain properties of the algorithm. For

6-224

 Equalization

information about what each property of an adaptive algorithm object means, see the
reference pages for the lms, signlms, normlms, varlms, rls, or cma functions.

To view or change any properties of an adaptive algorithm, use the syntax described for
channel objects in “Display Object Properties” on page 12-13 and “Change Object
Properties” on page 12-14.

Specify an Adaptive Equalizer

• “Defining an Equalizer Object” on page 6-225
• “Accessing Properties of an Equalizer” on page 6-226

Defining an Equalizer Object

To create an equalizer object, use one of the functions listed in the table below.

Function Type of Equalizer

lineareq Linear equalizer (symbol-spaced or
fractionally spaced)

dfe Decision-feedback equalizer

For example, the code below creates three equalizer objects: one representing a
symbol-spaced linear RLS equalizer having 10 weights, one representing a fractionally
spaced linear RLS equalizer having 10 weights and two samples per symbol, and one
representing a decision-feedback RLS equalizer having three weights in the feedforward
filter and two weights in the feedback filter.

% Create equalizer objects of different types.

eqlin = lineareq(10,rls(0.3)); % Symbol-spaced linear

eqfrac = lineareq(10,rls(0.3),[-1 1],2); % Fractionally spaced linear

eqdfe = dfe(3,2,rls(0.3)); % DFE

Although the lineareq and dfe functions have different syntaxes, they both require
an input argument that represents an adaptive algorithm. To learn how to represent an
adaptive algorithm or how to vary properties of the adaptive algorithm, see “Specify an
Adaptive Algorithm” on page 6-223.

Each of the equalizer objects created above is a valid input argument for the equalize
function. To learn how to use the equalize function to equalize a signal, see “Using
Adaptive Equalizers” on page 6-228.

6-225

6 System Design

Duplicating and Copying Objects

Another way to create an object is to duplicate an existing object and then adjust the
properties of the new object, if necessary. If you do this, it is important that you use a
copy command such as

c2 = copy(c1); % Copy c1 to create an independent c2.

instead of c2 = c1. The copy command creates a copy of c1 that is independent of c1.
By contrast, the command c2 = c1 creates c2 as merely a reference to c1, so that c1
and c2 always have indistinguishable content.

Accessing Properties of an Equalizer

An equalizer object has numerous properties that record information about the equalizer.
Properties can be related to

• The structure of the equalizer (for example, the number of weights).
• The adaptive algorithm that the equalizer uses (for example, the step size in the LMS

algorithm). When you create the equalizer object using lineareq or dfe, the function
copies certain properties from the algorithm object to the equalizer object. However,
the equalizer object does not retain a connection to the algorithm object.

• Information about the equalizer's current state (for example, the values of the
weights). The equalize function automatically updates these properties when it
operates on a signal.

• Instructions for operating on a signal (for example, whether the equalizer should reset
itself before starting the equalization process).

For information about what each equalizer property means, see the reference page for
the lineareq or dfe function.

To view or change any properties of an equalizer object, use the syntax described for
channel objects in “Display Object Properties” on page 12-13 and “Change Object
Properties” on page 12-14.

Linked Properties of an Equalizer Object

Some properties of an equalizer object are related to each other such that when one
property's value changes, another property's value must adjust, or else the equalizer
object fails to describe a valid equalizer. For example, in a linear equalizer, the
nWeights property is the number of weights, while the Weights property is the value of

6-226

 Equalization

the weights. If you change the value of nWeights, the value of Weights must adjust so
that its vector length is the new value of nWeights.

To find out which properties are related and how MATLAB compensates automatically
when you make certain changes in property values, see the reference page for lineareq
or dfe.

The example below illustrates that when you change the value of nWeights, MATLAB
automatically changes the values of Weights and WeightInputs to make their vector
lengths consistent with the new value of nWeights. Because the example uses the
variable-step-size LMS algorithm, StepSize is a vector (not a scalar) and MATLAB
changes its vector length to maintain consistency with the new value of nWeights.

eqlvar = lineareq(10,varlms(0.01,0.01,0,1)) % Create equalizer object.

eqlvar.nWeights = 8 % Change the number of weights from 10 to 8.

% MATLAB automatically changes the sizes of eqlvar.Weights and

% eqlvar.WeightInputs.

The output below displays all the properties of the equalizer object before and after the
change in the value of the nWeights property. In the second listing of properties, the
nWeights, Weights, WeightInputs, and StepSize properties all have different values
compared to the first listing of properties.

eqlvar =

 EqType: 'Linear Equalizer'

 AlgType: 'Variable Step Size LMS'

 nWeights: 10

 nSampPerSym: 1

 RefTap: 1

 SigConst: [-1 1]

 InitStep: 0.0100

 IncStep: 0.0100

 MinStep: 0

 MaxStep: 1

 LeakageFactor: 1

 StepSize: [1x10 double]

 Weights: [0 0 0 0 0 0 0 0 0 0]

 WeightInputs: [0 0 0 0 0 0 0 0 0 0]

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

eqlvar =

6-227

6 System Design

 EqType: 'Linear Equalizer'

 AlgType: 'Variable Step Size LMS'

 nWeights: 8

 nSampPerSym: 1

 RefTap: 1

 SigConst: [-1 1]

 InitStep: 0.0100

 IncStep: 0.0100

 MinStep: 0

 MaxStep: 1

 LeakageFactor: 1

 StepSize: [1x8 double]

 Weights: [0 0 0 0 0 0 0 0]

 WeightInputs: [0 0 0 0 0 0 0 0]

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

Using Adaptive Equalizers

• “Equalize Using a Training Sequence in MATLAB” on page 6-228
• “Equalizing Using a Training Sequence in Simulink” on page 6-230
• “Equalize in Decision-Directed Mode Using MATLAB” on page 6-231
• “Equalize in Decision-Directed Mode Using Simulink” on page 6-232
• “Delays from Equalization” on page 6-233
• “Equalize Using a Loop” on page 6-234

Equalize Using a Training Sequence in MATLAB

This section describes how to equalize a signal by using the equalize function to apply
an adaptive equalizer object to the signal. The equalize function also updates the
equalizer. This section assumes that you have already created an adaptive equalizer
object, as described in “Specify an Adaptive Equalizer” on page 6-225.

For an example that complements this section, see the “Adaptive Equalization” on page
5-2 example.

In typical applications, an equalizer begins by using a known sequence of transmitted
symbols when adapting the equalizer weights. The known sequence, called a training
sequence, enables the equalizer to gather information about the channel characteristics.
After the equalizer finishes processing the training sequence, it adapts the equalizer
weights in decision-directed mode using a detected version of the output signal. To use

6-228

 Equalization

a training sequence when invoking the equalize function, include the symbols of the
training sequence as an input vector.

Note: As an exception, CMA equalizers do not use a training sequence. If an equalizer
object is based on CMA, you should not include a training sequence as an input vector.

The following code illustrates how to use equalize with a training sequence. The
training sequence in this case is just the beginning of the transmitted message.
% Set up parameters and signals.

M = 4; % Alphabet size for modulation

msg = randi([0 M-1],1500,1); % Random message

hMod = comm.QPSKModulator('PhaseOffset',0);

modmsg = step(hMod,msg); % Modulate using QPSK.

trainlen = 500; % Length of training sequence

chan = [.986; .845; .237; .123+.31i]; % Channel coefficients

filtmsg = filter(chan,1,modmsg); % Introduce channel distortion.

% Equalize the received signal.

eq1 = lineareq(8, lms(0.01)); % Create an equalizer object.

eq1.SigConst = step(hMod,(0:M-1)')'; % Set signal constellation.

[symbolest,yd] = equalize(eq1,filtmsg,modmsg(1:trainlen)); % Equalize.

% Plot signals.

h = scatterplot(filtmsg,1,trainlen,'bx'); hold on;

scatterplot(symbolest,1,trainlen,'g.',h);

scatterplot(eq1.SigConst,1,0,'k*',h);

legend('Filtered signal','Equalized signal',...

 'Ideal signal constellation');

hold off;

% Compute error rates with and without equalization.

hDemod = comm.QPSKDemodulator('PhaseOffset',0);

demodmsg_noeq = step(hDemod,filtmsg); % Demodulate unequalized signal.

demodmsg = step(hDemod,yd); % Demodulate detected signal from equalizer.

hErrorCalc = comm.ErrorRate; % ErrorRate calculator

ser_noEq = step(hErrorCalc, ...

 msg(trainlen+1:end), demodmsg_noeq(trainlen+1:end));

reset(hErrorCalc)

ser_Eq = step(hErrorCalc, msg(trainlen+1:end),demodmsg(trainlen+1:end));

disp('Symbol error rates with and without equalizer:')

disp([ser_Eq(1) ser_noEq(1)])

The example goes on to determine how many errors occur in trying to recover the
modulated message with and without the equalizer. The symbol error rates, below, show
that the equalizer improves the performance significantly.

Symbol error rates with and without equalizer:

 0 0.3410

6-229

6 System Design

The example also creates a scatter plot that shows the signal before and after
equalization, as well as the signal constellation for QPSK modulation. Notice on the plot
that the points of the equalized signal are clustered more closely around the points of the
signal constellation.

Equalizing Using a Training Sequence in Simulink

To train a non-CMA equalizer block at the beginning of each frame throughout the
simulation, follow these steps:

1 Clear the Mode input port check box.
2 Provide the training sequence at the input port labeled Desired. Valid training

symbols are those listed in the Signal constellation vector. The block operates in
training mode at the beginning of each frame and switches to decision-directed mode
when it runs out of training symbols.

Typically, the symbol periods of the Input and Desired inputs match; that is, the
sample time of the Desired signal is k times the sample time of the Input signal, where
k is the Number of samples per symbol parameter in the equalizer block. If your
training sequence is constant throughout the simulation, the Simulink Constant block

6-230

 Equalization

is a convenient way to specify the sequence without having to specify a sample time
explicitly.

To train a non-CMA equalizer block only on selected frames during the simulation, see
“Equalize in Decision-Directed Mode Using MATLAB” on page 6-231.
Equalize in Decision-Directed Mode Using MATLAB

Decision-directed mode means the equalizer uses a detected version of its output signal
when adapting the weights. Adaptive equalizers typically start with a training sequence
(as mentioned in “Equalize Using a Training Sequence in MATLAB” on page 6-228)
and switch to decision-directed mode after exhausting all symbols in the training
sequence. CMA equalizers are an exception, using neither training mode nor decision-
directed mode.

For non-CMA equalizers, the equalize function operates in decision-directed mode
when one of these conditions is true:

• The syntax does not include a training sequence.
• The equalizer has exhausted all symbols in the training sequence and still has more

input symbols to process.

The example in “Controlling the Use of Training or Decision-Directed Mode” on page
6-232 uses training mode when processing the first trainlen symbols of the input
signal, and decision-directed mode thereafter. The example below discusses another
scenario.
Example: Equalizing Multiple Times, Varying the Mode

If you invoke equalize multiple times with the same equalizer object to equalize a
series of signal vectors, you might use a training sequence the first time you call the
function and omit the training sequence in subsequent calls. Each iteration of the
equalize function after the first one operates completely in decision-directed mode.
However, because the ResetBeforeFiltering property of the equalizer object is set
to 0, the equalize function uses the existing state information in the equalizer object
when starting each iteration's equalization operation. As a result, the training affects all
equalization operations, not just the first.

The code below illustrates this approach. Notice that the first call to equalize uses
a training sequence as an input argument, and the second call to equalize omits a
training sequence.

M = 4; % Alphabet size for modulation

6-231

6 System Design

msg = randi([0 M-1],1500,1); % Random message

hMod = comm.QPSKModulator('PhaseOffset',0);

modmsg = step(hMod,msg); % Modulate using QPSK.

trainlen = 500; % Length of training sequence

chan = [.986; .845; .237; .123+.31i]; % Channel coefficients

filtmsg = filter(chan,1,modmsg); % Introduce channel distortion.

% Set up equalizer.

eqlms = lineareq(8, lms(0.01)); % Create an equalizer object.

eqlms.SigConst = step(hMod,(0:M-1)')'; % Set signal constellation.

% Maintain continuity between calls to equalize.

eqlms.ResetBeforeFiltering = 0;

% Equalize the received signal, in pieces.

% 1. Process the training sequence.

s1 = equalize(eqlms,filtmsg(1:trainlen),modmsg(1:trainlen));

% 2. Process some of the data in decision-directed mode.

s2 = equalize(eqlms,filtmsg(trainlen+1:800));

% 3. Process the rest of the data in decision-directed mode.

s3 = equalize(eqlms,filtmsg(801:end));

s = [s1; s2; s3]; % Full output of equalizer

Equalize in Decision-Directed Mode Using Simulink

Decision-directed mode means that the equalizer uses a detected version of its output
signal when adapting the weights. Adaptive equalizers typically start with a training
sequence (as mentioned in “Equalizing Using a Training Sequence in Simulink” on
page 6-230) and switch to decision-directed mode after exhausting all symbols in the
training sequence. CMA equalizers are an exception, using neither training mode nor
decision-directed mode. The non-CMA equalizer blocks in this library operate in decision-
directed mode when one of these conditions is true:

• The equalizer started processing the current input frame in training mode, exhausted
all symbols in the training sequence frame, and still has more input symbols to
process.

• The Mode input port check box is selected and the Mode input signal is 0.

Controlling the Use of Training or Decision-Directed Mode

You can configure a non-CMA equalizer block so that it adapts in training mode for the
beginning or the entirety of selected frames. To achieve this level of control over the
equalizer's mode, follow these steps:

1 Enable the Mode input port by checking the Mode input port check box.

6-232

 Equalization

2 Send a binary-valued scalar signal to the Mode input port. The Mode input enables
you to toggle back and forth between training mode and decision-directed mode. The
significance of this signal is as follows:

• When the Mode input is 0, the equalizer operates in decision-directed mode on the
entire frame and ignores the Desired input.

• When the Mode input is 1, the equalizer operates in training mode at the
beginning of the frame until it exhausts the symbols in the Desired input, and
operates in decision-directed mode afterwards. If the Mode input is 1 and the
Desired input has as many symbols as the Input signal has, then the equalizer
operates in training mode on the entire frame.

Delays from Equalization

For proper equalization using adaptive algorithms other than CMA, you should set
the reference tap so that it exceeds the delay, in symbols, between the transmitter's
modulator output and the equalizer input. When this condition is satisfied, the total
delay between the modulator output and the equalizer output is equal to
(RefTap-1)/nSampPerSym

symbols. Because the channel delay is typically unknown, a common practice is to set the
reference tap to the center tap in a linear equalizer, or the center tap of the forward filter
in a decision-feedback equalizer.

For CMA equalizers, the expression above does not apply because a CMA equalizer has
no reference tap. If you need to know the delay, you can find it empirically after the
equalizer weights have converged. Use the xcorr function to examine cross-correlations
of the modulator output and the equalizer output.

Techniques for Working with Delays

Here are some typical ways to take a delay of D into account by padding or truncating
data:

• Pad your original data with D extra symbols at the end. Before comparing the original
data with the received data, omit the first D symbols of the received data. In this
approach, all the original data (not including the padding) is accounted for in the
received data.

• Before comparing the original data with the received data, omit the last D symbols of
the original data and the first D symbols of the received data. In this approach, some
of the original symbols are not accounted for in the received data.

6-233

6 System Design

The example below illustrates the latter approach. For an example that illustrates both
approaches in the context of interleavers, see “Delays of Convolutional Interleavers” on
page 6-161.

M = 2; % Use BPSK modulation for this example.

msg = randi([0 M-1],1000,1); % Random data

hMod = comm.BPSKModulator('PhaseOffset',0);

modmsg = step(hMod,msg); % Modulate

trainlen = 100; % Length of training sequence

trainsig = modmsg(1:trainlen); % Training sequence

% Define an equalizer and equalize the received signal.

eqlin = lineareq(3,normlms(.0005,.0001),pskmod(0:M-1,M));

eqlin.RefTap = 2; % Set reference tap of equalizer.

[eqsig,detsym] = equalize(eqlin,modmsg,trainsig); % Equalize.

hDemod = comm.BPSKDemodulator('PhaseOffset',0);

detmsg = step(hDemod,detsym); % Demodulate the detected signal.

% Compute bit error rate while compensating for delay introduced by RefTap

% and ignoring training sequence.

D = (eqlin.RefTap -1)/eqlin.nSampPerSym;

hErrorCalc = comm.ErrorRate('ReceiveDelay',D);

berVec = step(hErrorCalc, msg(trainlen+1:end), detmsg(trainlen+1:end));

ber = berVec(1)

numerrs = berVec(2)

The output is below.

numerrs =

 0

ber =

 0

Equalize Using a Loop

If your data is partitioned into a series of vectors (that you process within a loop, for
example), you can invoke the equalize function multiple times, saving the equalizer's
internal state information for use in a subsequent invocation. In particular, the final
values of the WeightInputs and Weights properties in one equalization operation
should be the initial values in the next equalization operation. This section gives an
example, followed by more general procedures for equalizing within a loop.

6-234

 Equalization

Example: Adaptive Equalization Within a Loop

The example below illustrates how to use equalize within a loop, varying the equalizer
between iterations. Because the example is long, this discussion presents it in these
steps:

If you want to equalize iteratively while potentially changing equalizers between
iterations, see “Changing the Equalizer Between Iterations” on page 6-238 for help
generalizing from this example to other cases.

Initializing Variables

The beginning of the example defines parameters and creates three equalizer objects:

• An RLS equalizer object.
• An LMS equalizer object.
• A variable, eq_current, that points to the equalizer object to use in the current

iteration of the loop. Initially, this points to the RLS equalizer object. After the second
iteration of the loop, eq_current is redefined to point to the LMS equalizer object.

% Set up parameters.

M = 16; % Alphabet size for modulation

sigconst = step(comm.RectangularQAMModulator(M),(0:M-1)');

 % Signal constellation for 16-QAM

chan = [1 0.45 0.3+0.2i]; % Channel coefficients

hMod = comm.RectangularQAMModulator(M); % QAMModulator System object

% Set up equalizers.

eqrls = lineareq(6, rls(0.99,0.1)); % Create an RLS equalizer object.

eqrls.SigConst = sigconst'; % Set signal constellation.

eqrls.ResetBeforeFiltering = 0; % Maintain continuity between iterations.

eqlms = lineareq(6, lms(0.003)); % Create an LMS equalizer object.

eqlms.SigConst = sigconst'; % Set signal constellation.

eqlms.ResetBeforeFiltering = 0; % Maintain continuity between iterations.

eq_current = eqrls; % Point to RLS for first iteration.

Simulating the System Using a Loop

The next portion of the example is a loop that

• Generates a signal to transmit and selects a portion to use as a training sequence in
the first iteration of the loop

• Introduces channel distortion
• Equalizes the distorted signal using the chosen equalizer for this iteration, retaining

the final state and weights for later use

6-235

6 System Design

• Plots the distorted and equalized signals, for comparison
• Switches to an LMS equalizer between the second and third iterations

% Main loop

for jj = 1:4

 msg = randi([0 M-1],500,1); % Random message

 modmsg = step(hMod,msg); % Modulate using 16-QAM.

 % Set up training sequence for first iteration.

 if jj == 1

 ltr = 200; trainsig = modmsg(1:ltr);

 else

 % Use decision-directed mode after first iteration.

 ltr = 0; trainsig = [];

 end

 % Introduce channel distortion.

 filtmsg = filter(chan,1,modmsg);

 % Equalize the received signal.

 s = equalize(eq_current,filtmsg,trainsig);

 % Plot signals.

 h = scatterplot(filtmsg(ltr+1:end),1,0,'bx'); hold on;

 scatterplot(s(ltr+1:end),1,0,'g.',h);

 scatterplot(sigconst,1,0,'k*',h);

 legend('Received signal','Equalized signal','Signal constellation');

 title(['Iteration #' num2str(jj) ' (' eq_current.AlgType ')']);

 hold off;

 % Switch from RLS to LMS after second iteration.

 if jj == 2

 eqlms.WeightInputs = eq_current.WeightInputs; % Copy final inputs.

 eqlms.Weights = eq_current.Weights; % Copy final weights.

 eq_current = eqlms; % Make eq_current point to eqlms.

 end

end

The example produces one scatter plot for each iteration, indicating the iteration number
and the adaptive algorithm in the title. A sample plot is below. Your plot might look
different because this example uses random numbers.

6-236

 Equalization

Procedures for Equalizing Within a Loop

This section describes two procedures for equalizing within a loop. The first procedure
uses the same equalizer in each iteration, and the second is useful if you want to change
the equalizer between iterations.

Using the Same Equalizer in Each Iteration

The typical procedure for using equalize within a loop is as follows:

1 Before the loop starts, create the equalizer object that you want to use in the first
iteration of the loop.

2 Set the equalizer object's ResetBeforeFiltering property to 0 to maintain
continuity between successive invocations of equalize.

3 Inside the loop, invoke equalize using a syntax like one of these:

y = equalize(eqz,x,trainsig);

y = equalize(eqz,x);

The equalize function updates the state and weights of the equalizer at the end
of the current iteration. In the next iteration, the function continues from where it
finished in the previous iteration because ResetBeforeFiltering is set to 0.

6-237

6 System Design

This procedure is similar to the one used in “Example: Equalizing Multiple Times,
Varying the Mode” on page 6-231. That example uses equalize multiple times but
not within a loop.

Changing the Equalizer Between Iterations

In some applications, you might want to modify the adaptive algorithm between
iterations. For example, you might use a CMA equalizer for the first iteration and an
LMS or RLS equalizer in subsequent iterations. The procedure below gives one way
to accomplish this, roughly following the example in “Example: Adaptive Equalization
Within a Loop” on page 6-235:

1 Before the loop starts, create the different kinds of equalizer objects that you want to
use during various iterations of the loop.

For example, create one CMA equalizer object, eqcma, and one LMS equalizer object,
eqlms.

2 For each equalizer object, set the ResetBeforeFiltering property to 0 to
maintain continuity between successive invocations of equalize.

3 Create a variable eq_current that points to the equalizer object you want to use
for the first iteration. Use = to establish the connection so that the two objects get
updated together:

eq_current = eqcma; % Point to eqcma.

The purpose of eq_current is to represent the equalizer used in each iteration,
where you can switch equalizers from one iteration to the next by using a command
like eq_current = eqlms. The example illustrates this approach near the end of
its loop.

4 Inside the loop, perform these steps:

a Invoke equalize using a syntax like one of these:

y = equalize(eq_current,x,trainsig);

y = equalize(eq_current,x);

b Copy the values of the WeightInputs and Weights properties from
eq_current to the equalizer object that you want to use for the next iteration.
Use dot notation. For example,

eqlms.WeightInputs = eq_current.WeightInputs;

eqlms.Weights = eq_current.Weights;

6-238

 Equalization

c Redefine eq_current to point to the equalizer object that you want to use for
the next iteration, using =. Now eq_current is set up for the next iteration,
because it represents the new kind of equalizer but retains the old values for the
state and weights.

The reason for creating multiple equalizer objects and then copying the state and
weights, instead of simply changing the equalizer class or adaptive algorithm in a single
equalizer object, is that the class and adaptive algorithm properties of an equalizer object
are fixed.

MLSE Equalizers

• “Section Overview” on page 6-239
• “Equalizing a Vector Signal” on page 6-240
• “Equalizing in Continuous Operation Mode” on page 6-241
• “Use a Preamble or Postamble” on page 6-244
• “Using MLSE Equalizers in Simulink” on page 6-246

Section Overview

In Communications System Toolbox, the mlseeq function and MLSE Equalizer block
use the Viterbi algorithm to equalize a linearly modulated signal through a dispersive
channel. Both the function and the block output the maximum likelihood sequence
estimate of the signal, using an estimate of the channel modeled as a finite input
response (FIR) filter.

Decoding a received signal uses these steps:

1 Applies the FIR filter, corresponding to the channel estimate, to the symbols in the
input signal.

2 Uses the Viterbi algorithm to compute the traceback paths and the state metric,
which are the numbers assigned to the symbols at each step of the Viterbi algorithm.
The metrics are based on Euclidean distance.

3 Outputs the maximum likelihood sequence estimate of the signal, as a sequence of
complex numbers corresponding to the constellation points of the modulated signal.

An MLSE equalizer yields the best possible performance, in theory, but is
computationally intensive.

6-239

6 System Design

For background material about MLSE equalizers, see the works listed in “Selected
Bibliography for Equalizers” on page 6-246.

When using the MLSE Equalizer block, you specify the channel estimate and the signal
constellation that the modulator in your model uses. If applicable, you can also specify a
preamble and/or postamble that you expect to accompany your data. For full details on
options, see the reference page for the MLSE Equalizer block.

Equalizing a Vector Signal

In its simplest form, the mlseeq function equalizes a vector of modulated data when you
specify the estimated coefficients of the channel (modeled as an FIR filter), the signal
constellation for the modulation type, and the traceback depth that you want the Viterbi
algorithm to use. Larger values for the traceback depth can improve the results from the
equalizer but increase the computation time.

An example of the basic syntax for mlseeq is below.

M = 4; hMod = comm.QPSKModulator;

const = step(hMod,(0:M-1)'); % 4-PSK constellation

msg = step(hMod,[1 2 2 0 3 1 3 3 2 1 0 2 3 0 1]'); % Modulated message

chcoeffs = [.986; .845; .237; .12345+.31i]; % Channel coefficients

filtmsg = filter(chcoeffs,1,msg); % Introduce channel distortion.

tblen = 10; % Traceback depth for equalizer

chanest = chcoeffs; % Assume the channel is known exactly.

hMLSEE = comm.MLSEEqualizer('TracebackDepth',tblen,...

 'Channel',chanest, 'Constellation',const);

msgEq = step(hMLSEE,filtmsg); % Equalize.

The mlseeq function has two operation modes:

• Continuous operation mode enables you to process a series of vectors using repeated
calls to mlseeq, where the function saves its internal state information from one call
to the next. To learn more, see “Equalizing in Continuous Operation Mode” on page
6-241.

• Reset operation mode enables you to specify a preamble and postamble that
accompany your data. To learn more, see “Use a Preamble or Postamble” on page
6-244.

If you are not processing a series of vectors and do not need to specify a preamble
or postamble, the operation modes are nearly identical. However, they differ in that
continuous operation mode incurs a delay, while reset operation mode does not. The

6-240

 Equalization

example above could have used either mode, except that substituting continuous
operation mode would have produced a delay in the equalized output. To learn more
about the delay in continuous operation mode, see “Delays in Continuous Operation
Mode” on page 6-241.

Equalizing in Continuous Operation Mode

If your data is partitioned into a series of vectors (that you process within a loop, for
example), continuous operation mode is an appropriate way to use the mlseeq function.
In continuous operation mode, mlseeq can save its internal state information for use
in a subsequent invocation and can initialize using previously stored state information.
To choose continuous operation mode, use 'cont' as an input argument when invoking
mlseeq.

Note: Continuous operation mode incurs a delay, as described in “Delays in Continuous
Operation Mode” on page 6-241. Also, continuous operation mode cannot accommodate
a preamble or postamble.

Procedure for Continuous Operation Mode

The typical procedure for using continuous mode within a loop is as follows:

1 Before the loop starts, create three empty matrix variables (for example, sm, ts, ti)
that eventually store the state metrics, traceback states, and traceback inputs for
the equalizer.

2 Inside the loop, invoke mlseeq using a syntax like

[y,sm,ts,ti] = mlseeq(x,chcoeffs,const,tblen,'cont',nsamp,sm,ts,ti);

Using sm, ts, and ti as input arguments causes mlseeq to continue from where it
finished in the previous iteration. Using sm, ts, and ti as output arguments causes
mlseeq to update the state information at the end of the current iteration. In the
first iteration, sm, ts, and ti start as empty matrices, so the first invocation of the
mlseeq function initializes the metrics of all states to 0.

Delays in Continuous Operation Mode

Continuous operation mode with a traceback depth of tblen incurs an output delay of
tblen symbols. This means that the first tblen output symbols are unrelated to the
input signal, while the last tblen input symbols are unrelated to the output signal. For

6-241

6 System Design

example, the command below uses a traceback depth of 3, and the first 3 output symbols
are unrelated to the input signal of ones(1,10).

y = step(comm.MLSEEqualizer('Channel',1, 'Constellation',[-7:2:7], ...

 'TracebackDepth',3,'TerminationMethod', 'Continuous'), ...

 complex(ones(10,1)))

y =

 -7 -7 -7 1 1 1 1 1 1 1

Keeping track of delays from different portions of a communication system is important,
especially if you compare signals to compute error rates. The example in “Example:
Continuous Operation Mode” on page 6-242 illustrates how to take the delay into
account when computing an error rate.

Example: Continuous Operation Mode

The example below illustrates the procedure for using continuous operation mode within
a loop. Because the example is long, this discussion presents it in multiple steps:

Initializing Variables

The beginning of the example defines parameters, initializes the state variables sm, ts,
and ti, and initializes variables that accumulate results from each iteration of the loop.

n = 200; % Number of symbols in each iteration

numiter = 25; % Number of iterations

M = 4; % Use 4-PSK modulation.

hMod = comm .QPSKModulator('PhaseOffset',0);

const = step(hMod,(0:M-1)'); % PSK constellation

chcoeffs = [1 ; 0.25]; % Channel coefficients

chanest = chcoeffs; % Channel estimate

tblen = 10; % Traceback depth for equalizer

sm = []; ts = []; ti = []; % Initialize equalizer data.

% Initialize cumulative results.

fullmodmsg = []; fullfiltmsg = []; fullrx = [];

hMLSEE = comm.MLSEEqualizer('TracebackDepth',tblen, 'Channel', chanest, ...

 'Constellation',const, 'TerminationMethod', 'Continuous');

Simulating the System Using a Loop

The middle portion of the example is a loop that generates random data, modulates it
using baseband PSK modulation, and filters it. Finally, mlseeq equalizes the filtered

6-242

 Equalization

data. The loop also updates the variables that accumulate results from each iteration of
the loop.

for jj = 1:numiter

 msg = randi([0 M-1],n,1); % Random signal vector

 modmsg = step(hMod,msg); % PSK-modulated signal

 filtmsg = filter(chcoeffs,1,modmsg); % Filtered signal

 rx = step(hMLSEE,filtmsg); % Equalize

 % Update vectors with cumulative results.

 fullmodmsg = [fullmodmsg; modmsg];

 fullfiltmsg = [fullfiltmsg; filtmsg];

 fullrx = [fullrx; rx];

end

Computing an Error Rate and Plotting Results

The last portion of the example computes the symbol error rate from all iterations of the
loop. The symerr function compares selected portions of the received and transmitted
signals, not the entire signals. Because continuous operation mode incurs a delay whose
length in samples is the traceback depth (tblen) of the equalizer, it is necessary to
exclude the first tblen samples from the received signal and the last tblen samples
from the transmitted signal. Excluding samples that represent the delay of the equalizer
ensures that the symbol error rate calculation compares samples from the received and
transmitted signals that are meaningful and that truly correspond to each other.

The example also plots the signal before and after equalization in a scatter plot. The
points in the equalized signal coincide with the points of the ideal signal constellation for
4-PSK.

% Compute total number of symbol errors. Take the delay into account.

hErrorCalc = comm.ErrorRate('ReceiveDelay',10);

err = step(hErrorCalc, fullmodmsg, fullrx);

numsymerrs = err(1)

% Plot signal before and after equalization.

h = scatterplot(fullfiltmsg); hold on;

scatterplot(fullrx,1,0,'r*',h);

legend('Filtered signal before equalization','Equalized signal',...

 'Location','NorthOutside');

hold off;

The output and plot follow.

numsymerrs =

6-243

6 System Design

 0

Use a Preamble or Postamble

Some systems include a sequence of known symbols at the beginning or end of a set of
data. The known sequence at the beginning or end is called a preamble or postamble,
respectively. The mlseeq function can accommodate a preamble and postamble that are
already incorporated into its input signal. When you invoke the function, you specify
the preamble and postamble as integer vectors that represent the sequence of known
symbols by indexing into the signal constellation vector. For example, a preamble
vector of [1 4 4] and a 4-PSK signal constellation of [1 j -1 -j] indicate that the
modulated signal begins with [1 -j -j].

If your system uses a preamble without a postamble, use a postamble vector of [] when
invoking mlseeq. Similarly, if your system uses a postamble without a preamble, use a
preamble vector of [].
Use a Preamble in MATLAB

The example below illustrates how to accommodate a preamble when using mlseeq. The
same preamble symbols appear at the beginning of the message vector and in the syntax

6-244

 Equalization

for mlseeq. If you want to use a postamble, you can append it to the message vector
and also include it as the last input argument for mlseeq. In this example, however, the
postamble input in the mlseeq syntax is an empty vector because the system uses no
postamble.

M = 4; hMod = comm.QPSKModulator;% Use 4-PSK modulation.

const = step(hMod,(0:M-1)'); % PSK constellation

tblen = 16; % Traceback depth for equalizer

preamble = [3; 1]; % Expected preamble, as integers

msgIdx = randi([0 M-1],98,1); % Random symbols

msgIdx = [preamble; msgIdx]; % Include preamble at the beginning.

msg = step(hMod,msgIdx); % Modulated message

chcoeffs = [.623; .489+.234i; .398i; .21]; % Channel coefficients

chanest = chcoeffs; % Channel estimate

hMLSEE = comm.MLSEEqualizer('TracebackDepth',tblen,...

 'Channel',chanest, 'Constellation',const, ...

 'PreambleSource', 'Property', 'Preamble', preamble);

filtmsg = filter(chcoeffs,1,msg); % Introduce channel distortion.

d = step(hMLSEE,filtmsg);

% Symbol error rate

hErrorCalc = comm.ErrorRate;

serVec = step(hErrorCalc, msg,d);

ser = serVec(1)

nsymerrs = serVec(2)

6-245

6 System Design

The output is below.

nsymerrs =

 0

ser =

 0

Using MLSE Equalizers in Simulink

The MLSE Equalizer block uses the Viterbi algorithm to equalize a linearly modulated
signal through a dispersive channel. The block outputs the maximum likelihood sequence
estimate (MLSE) of the signal, using your estimate of the channel modeled as a finite
input response (FIR) filter.

The block decodes the received signal using these steps:

1 Applies the FIR filter corresponding to the channel estimate to the symbols in the
input signal.

2 Uses the Viterbi algorithm to compute the traceback paths and the state metric,
which are the numbers assigned to the symbols at each step of the Viterbi algorithm.

3 Outputs the maximum likelihood sequence estimate of the signal, as a sequence of
complex numbers corresponding to the constellation points of the modulated signal.

An MLSE equalizer yields the best possible performance, in theory, but is
computationally intensive.

When using the MLSE Equalizer block, you specify the channel estimate and the signal
constellation that the modulator in your model uses. If applicable, you can also specify a
preamble and/or postamble that you expect to accompany your data. For full details on
options, see the reference page for the MLSE Equalizer block.

Selected Bibliography for Equalizers

[1] Farhang-Boroujeny, B., Adaptive Filters: Theory and Applications, Chichester,
England, John Wiley & Sons, 1998.

[2] Haykin, Simon, Adaptive Filter Theory, Third Ed., Upper Saddle River, NJ, Prentice-
Hall, 1996.

6-246

 Equalization

[3] Kurzweil, Jack, An Introduction to Digital Communications, New York, John Wiley &
Sons, 2000.

[4] Proakis, John G., Digital Communications, Fourth Ed., New York, McGraw-Hill,
2001.

[5] Steele, Raymond, Ed., Mobile Radio Communications, Chichester, England, John
Wiley & Sons, 1996.

6-247

6 System Design

Multiple-Input Multiple-Output (MIMO)

In this section...

“Orthogonal Space-Time Block Codes (OSTBC)” on page 6-248
“MIMO Fading Channel” on page 6-249
“MIMO Examples” on page 6-249
“OSTBC Over 3x2 Rayleigh Fading Channel” on page 6-250
“Selected Bibliography for MIMO systems” on page 6-253

The use of Multiple-Input Multiple-Output (MIMO) techniques has revolutionized
wireless communications systems with potential gains in capacity when using multiple
antennas at both transmitter and receiver ends of a communications system. New
techniques, which account for the extra spatial dimension, have been adopted to realize
these gains in new and previously existing systems.

MIMO technology has been adopted in multiple wireless systems, including Wi-Fi,
WiMAX, LTE, and is proposed for future standards (such as LTE-Advanced and IMT-
Advanced).

The Communications System Toolbox product offers components to model:

• OSTBC (orthogonal space-time block coding technique)
• MIMO Fading Channels

and demos highlighting the use of these components in applications.

For background material on the subject of MIMO systems, see the works listed in
Selected Bibliography for MIMO systems on page 6-253.

Orthogonal Space-Time Block Codes (OSTBC)

The Communications System Toolbox product provides components to model Orthogonal
Space Time Block Coding (OSTBC) – a MIMO technique which offers full spatial
diversity gain with extremely simple single-symbol maximum likelihood decoding [4,6,8].

In Simulink, the OSTBC Encoder and OSTBC Combiner blocks, residing in the MIMO
block library, implement the orthogonal space time block coding technique. These two

6-248

 Multiple-Input Multiple-Output (MIMO)

blocks offer a variety of specific codes (with different rates) for up to 4 transmit and 8
receive antenna systems. The encoder block is used at the transmitter to map symbols
to multiple antennas while the combiner block is used at the receiver to extract the soft
information per symbol using the received signal and the channel state information. You
access the MIMO library by double clicking the icon in the main Communications System
Toolbox block library. Alternatively, you can type commmimo at the MATLAB command
line.

The OSTBC technique is an attractive scheme because it can achieve the full (maximum)
spatial diversity order and have symbol-wise maximum-likelihood (ML) decoding.
For more information pertaining to the algorithmic details and the specific codes
implemented, see OSTBC Combining Algorithms on the OSTBC Combiner block
help page and OSTBC Encoding Algorithms on the OSTBC Encoder block help page.
Similar functionality is available in MATLAB by using the comm.OSTBCCombiner and
comm.OSTBCEncoder System objects.

MIMO Fading Channel

The Communications System Toolbox software also includes a MIMO fading channel
object. You can use this object to model the fading channel characteristics of MIMO links.
The object models both Rayleigh and Rician fading, and uses the Kronecker model for the
spatial correlation between the links [1].

For more information, see the comm.MIMOChannel and comm.LTEMIMOChannel Help
pages.

MIMO Examples

The following examples illustrate MIMO techniques or the use of MIMO components:

MATLAB

Concatenated OSTBC with TCM: OSTBC System objects

IEEE 802.11n Channel Models: comm.MIMOChannel System object

IEEE 802.16 Channel Models: comm.MIMOChannel System object

Introduction to MIMO Systems: Comparing MRC and OSTBC techniques

6-249

6 System Design

Spatial Multiplexing: techniques offering multiplexing gain

Simulink

Adaptive MIMO System with OSTBC: OSTBC and MIMO channel in Simulink

Concatenated OSTBC with TCM: OSTBC with blocks

IEEE® 802.16-2004 OFDM PHY Link, Including Space-Time Block Coding

MIMO Decoder Using Simulink® and the MATLAB™ Function Block: Lattice decoder.
You must install a HDL Coder user license to run this example.

OSTBC Over 3x2 Rayleigh Fading Channel

This example demonstrates the use of Orthogonal Space-Time Block Codes (OSTBC)
to achieve diversity gains in a multiple-input multiple-output (MIMO) communication
system. The example shows the transmission of data over three transmit antennas and
two receive antennas (hence the 3x2 notation) using independent Rayleigh fading per
link. This description covers the following:

• Overview of the Simulation on page 6-250
• Orthogonal Space-Time Block Code on page 6-251
• Performance on page 6-252

Overview of the Simulation

The model is shown in the following figure. To open the model, type doc_ostbc32 at
the MATLAB command line. The simulation creates a random binary signal, modulates
it using a binary phase shift keying (BPSK) technique, and then encodes the waveform

using a rate 3

4
 orthogonal space-time block code for transmission over the fading

channel. The fading channel models six independent links, due to the three transmit
by two receive antennae configuration as single-path Rayleigh fading processes. The
simulation adds white Gaussian noise at the receiver. Then, it combines the signals
from both receive antennas into a single stream for demodulation. For this combining
process, the model assumes perfect knowledge of the channel gains at the receiver.
Finally, the simulation compares the demodulated data with the original transmitted
data, computing the bit error rate. The simulation ends after processing 100 errors or 1e6
bits, whichever comes first.

6-250

 Multiple-Input Multiple-Output (MIMO)

Orthogonal Space-Time Block Code

This simulation uses an orthogonal space-time block code with three transmit antennas
and a rate ¾ code, as shown below

s s s

s s

s s

s s

1 2 2

2 1

3 1

3 2

0

0

0

-

-

-

Ê

Ë

Á
Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜
˜

* *

* *

* *

where s1, s2, s3 correspond to the three symbol inputs for which the output is given by
the previous matrix. Note in the simulation that the input to the OSTBC Encoder block is
a 3x1 vector signal and the output is a 4x3 matrix. The number of columns in the output
signal indicates the number of transmit antennas for this simulation, where the first
dimension is for time.

6-251

6 System Design

For the selected code, the output signal power per time step is ()
.

12 3

4
2 25

-

= W . Also,

note that the channel symbol period for this simulation is 1 3

4
7 5

3 4
e e

- -

=* . sec , due to the

use of rate 3

4
 code. These two values are used in calibrating the white Gaussian noise

added in the simulation. In addition, to accurately set the Eb/N0 values used in the AWGN
Channel block, the input signal power must be multiplied by 3 because there are three
transmitters. This increases the corresponding noise power by the same factor.

Performance

Now compare the performance of the code with theoretical results using BERtool as an
aid. For the theoretical results, the EbNo is directly scaled by the diversity order (six
in this case). For the simulation, in the Receive Noise block, we account for only the
diversity due to the transmitters (hence, the EbNo parameter is scaled by a factor of
three).

The figure below compares the simulated BER for a range of EbNo values with the
theoretical results for a diversity order of six.

6-252

 Multiple-Input Multiple-Output (MIMO)

Note the close alignment of the simulated results with the theoretical (especially. at
low EbNo values). The fading channel modeled in the simulation is not completely
static (has a low Doppler). As a result the channel is not held constant over the block
symbols. Varying this parameter for the channel shows little variation between the
results compared to the theoretical curve.

Selected Bibliography for MIMO systems

[1] C. Oestges and B. Clerckx, MIMO Wireless Communications: From Real-World
Propagation to Space-Time Code Design, Academic Press, 2007.

[2] George Tsoulos, Ed., "MIMO System Technology for Wireless Communications", CRC
Press, Boca Raton, FL, 2006.

6-253

6 System Design

[3] L. M. Correira, Ed., Mobile Broadband Multimedia Networks: Techniques, Models and
Tools for 4G, Academic Press, 2006.

[4] M. Jankiraman, "Space-time codes and MIMO systems", Artech House, Boston, 2004.

[5] G. J. Foschini, M. J. Gans, "On the limits of wireless communications in a fading
environment when using multiple antennas", IEEE Wireless Personal
Communications, Vol. 6, Mar. 1998, pp. 311-335.

[6] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,”
IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451–
1458, Oct. 1998.

[7] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space–time codes for high data rate
wireless communication: Performance analysis and code construction,” IEEE
Transactions on Information Theory, vol. 44, no. 2, pp. 744–765, Mar. 1998.

[8] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from
orthogonal designs,” IEEE Transactions on Information Theory, vol. 45, no. 5, pp.
1456–1467, Jul. 1999.

[9] 3rd Generation Partnership Project, Technical Specification Group Radio Access
Network, Evolved Universal Terrestrial Radio Access (E-UTRA), Base Station
(BS) radio transmission and reception, Release 10, 3GPP TS 36.104, v10.0.0,
2010-09.

[10] 3rd Generation Partnership Project, Technical Specification Group Radio Access
Network, Evolved Universal Terrestrial Radio Access (E-UTRA), User Equipment
(UE) radio transmission and reception, Release 10, 3GPP TS 36.101, v10.0.0,
2010-10.

6-254

 Huffman Coding

Huffman Coding

Huffman coding offers a way to compress data. The average length of a Huffman code
depends on the statistical frequency with which the source produces each symbol from
its alphabet. A Huffman code dictionary, which associates each data symbol with a
codeword, has the property that no codeword in the dictionary is a prefix of any other
codeword in the dictionary.

The huffmandict, huffmanenco, and huffmandeco functions support Huffman coding
and decoding.

Note: For long sequences from sources having skewed distributions and small alphabets,
arithmetic coding compresses better than Huffman coding. To learn how to use
arithmetic coding, see “Arithmetic Coding” on page 6-12.

Huffman coding requires statistical information about the source of the data being
encoded. In particular, the p input argument in the huffmandict function lists the
probability with which the source produces each symbol in its alphabet.

For example, consider a data source that produces 1s with probability 0.1, 2s with
probability 0.1, and 3s with probability 0.8. The main computational step in encoding
data from this source using a Huffman code is to create a dictionary that associates each
data symbol with a codeword. The example below creates such a dictionary and then
show the codeword vector associated with a particular value from the data source.

Create a Huffman Code Dictionary

This example shows how to create a Huffman code dictionary using the huffmandict
function.

Create a vector of data symbols and assign a probability to each.

symbols = [1 2 3];

prob = [0.1 0.1 0.8];

Create a Huffman code dictionary. The most probable data symbol, 3, is associated with
a one-digit codeword, while less probable data symbols are associated with two-digit
codewords.

dict = huffmandict(symbols,prob)

6-255

6 System Design

dict =

 3×2 cell array

 [1] [1×2 double]

 [2] [1×2 double]

 [3] [0]

Display the second row of the dictionary. The output also shows that a Huffman encoder
receiving the data symbol 2 substitutes the sequence 1 0.

dict{2,:}

ans =

 2

ans =

 1 0

Create and Decode a Huffman Code

The example performs Huffman encoding and decoding using a source whose alphabet
has three symbols. Notice that the huffmanenco and huffmandeco functions use the
dictionary created by huffmandict.

Generate a data sequence to encode.

sig = repmat([3 3 1 3 3 3 3 3 2 3],1,50);

Define the set of data symbols and the probability associated with each element.

symbols = [1 2 3];

p = [0.1 0.1 0.8];

Create the Huffman code dictionary.

dict = huffmandict(symbols,p);

6-256

 Huffman Coding

Encode and decode the data. Verify that the original data, sig, and the decoded data,
dhsig, are identical.

hcode = huffmanenco(sig,dict);

dhsig = huffmandeco(hcode,dict);

isequal(sig,dhsig)

ans =

 logical

 1

6-257

6 System Design

Differential Pulse Code Modulation

In this section...

“Section Overview” on page 6-258
“DPCM Terminology” on page 6-258
“Represent Predictors” on page 6-258
“Example: DPCM Encoding and Decoding” on page 6-259
“Optimize DPCM Parameters” on page 6-260

Section Overview

The quantization in the section “Quantize a Signal” on page 6-13 requires no a priori
knowledge about the transmitted signal. In practice, you can often make educated
guesses about the present signal based on past signal transmissions. Using such
educated guesses to help quantize a signal is known as predictive quantization. The most
common predictive quantization method is differential pulse code modulation (DPCM).

The functions dpcmenco, dpcmdeco, and dpcmopt can help you implement a DPCM
predictive quantizer with a linear predictor.

DPCM Terminology

To determine an encoder for such a quantizer, you must supply not only a partition and
codebook as described in “Represent Partitions” on page 6-2 and “Represent Codebooks”
on page 6-3, but also a predictor. The predictor is a function that the DPCM encoder uses
to produce the educated guess at each step. A linear predictor has the form

y(k) = p(1)x(k-1) + p(2)x(k-2) + ... + p(m-1)x(k-m+1) + p(m)x(k-m)

where x is the original signal, y(k) attempts to predict the value of x(k), and p is an m-
tuple of real numbers. Instead of quantizing x itself, the DPCM encoder quantizes the
predictive error, x-y. The integer m above is called the predictive order. The special case
when m = 1 is called delta modulation.

Represent Predictors

If the guess for the kth value of the signal x, based on earlier values of x, is

6-258

 Differential Pulse Code Modulation

y(k) = p(1)x(k-1) + p(2)x(k-2) +...+ p(m-1)x(k-m+1) + p(m)x(k-m)

then the corresponding predictor vector for toolbox functions is

predictor = [0, p(1), p(2), p(3),..., p(m-1), p(m)]

Note: The initial zero in the predictor vector makes sense if you view the vector as the
polynomial transfer function of a finite impulse response (FIR) filter.

Example: DPCM Encoding and Decoding

A simple special case of DPCM quantizes the difference between the signal's current
value and its value at the previous step. Thus the predictor is just y(k) = x (k - 1).
The code below implements this scheme. It encodes a sawtooth signal, decodes it, and
plots both the original and decoded signals. The solid line is the original signal, while the
dashed line is the recovered signals. The example also computes the mean square error
between the original and decoded signals.

predictor = [0 1]; % y(k)=x(k-1)

partition = [-1:.1:.9];

codebook = [-1:.1:1];

t = [0:pi/50:2*pi];

x = sawtooth(3*t); % Original signal

% Quantize x using DPCM.

encodedx = dpcmenco(x,codebook,partition,predictor);

% Try to recover x from the modulated signal.

decodedx = dpcmdeco(encodedx,codebook,predictor);

plot(t,x,t,decodedx,'--')

legend('Original signal','Decoded signal','Location','NorthOutside');

distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

 0.0327

6-259

6 System Design

Optimize DPCM Parameters

• “Section Overview” on page 6-260
• “Example: Comparing Optimized and Nonoptimized DPCM Parameters” on page

6-261

Section Overview

The section “Optimize Quantization Parameters” on page 6-4 describes how to use
training data with the lloyds function to help find quantization parameters that will
minimize signal distortion.

This section describes similar procedures for using the dpcmopt function in conjunction
with the two functions dpcmenco and dpcmdeco, which first appear in the previous
section.

Note: The training data you use with dpcmopt should be typical of the kinds of signals
you will actually be quantizing with dpcmenco.

6-260

 Differential Pulse Code Modulation

Example: Comparing Optimized and Nonoptimized DPCM Parameters

This example is similar to the one in the last section. However, where the last example
created predictor, partition, and codebook in a straightforward but haphazard
way, this example uses the same codebook (now called initcodebook) as an initial
guess for a new optimized codebook parameter. This example also uses the predictive
order, 1, as the desired order of the new optimized predictor. The dpcmopt function
creates these optimized parameters, using the sawtooth signal x as training data. The
example goes on to quantize the training data itself; in theory, the optimized parameters
are suitable for quantizing other data that is similar to x. Notice that the mean square
distortion here is much less than the distortion in the previous example.

t = [0:pi/50:2*pi];

x = sawtooth(3*t); % Original signal

initcodebook = [-1:.1:1]; % Initial guess at codebook

% Optimize parameters, using initial codebook and order 1.

[predictor,codebook,partition] = dpcmopt(x,1,initcodebook);

% Quantize x using DPCM.

encodedx = dpcmenco(x,codebook,partition,predictor);

% Try to recover x from the modulated signal.

decodedx = dpcmdeco(encodedx,codebook,predictor);

distor = sum((x-decodedx).^2)/length(x) % Mean square error

The output is

distor =

 0.0063

6-261

6 System Design

Compand a Signal

In certain applications, such as speech processing, it is common to use a logarithm
computation, called a compressor, before quantizing. The inverse operation of a
compressor is called an expander. The combination of a compressor and expander is
called a compander.

The compand function supports two kinds of companders: µ-law and A-law companders.
Its reference page lists both compressor laws.

Quantize and Compand an Exponential Signal

Quantize an exponential signal with and without companding and compare the mean
square distortions.

Set the μ-law parameter Mu.

Mu = 255;

Create an exponential signal and find its maximum value.

sig = exp(-4:0.1:4);

V = max(sig);

Quantize the signal using equal-length intervals. Set the partition and codebook
arguments assuming six bit quantization.

partition = 0:2^6-1;

codebook = 0:2^6;

[~,~,distor] = quantiz(sig,partition,codebook);

Compress the signal using the compand function. Apply quantization and expand the
quantized signal. Calculate the mean square distortion.

compsig = compand(sig,Mu,V,'mu/compressor');

[~,quants] = quantiz(compsig,partition,codebook);

newsig = compand(quants,Mu,max(quants),'mu/expander');

distor2 = sum((newsig-sig).^2)/length(sig);

Compare the mean square distortions. The output shows that the distortion is smaller
when companding is used. This is because equal-length intervals are well suited to the
logarithm of sig but not well suited to sig itself.

6-262

 Compand a Signal

[distor, distor2]

ans =

 0.5348 0.0397

Plot the signal and its companded version.

plot([sig' compsig'])

legend('Original','Companded','location','nw')

6-263

6 System Design

Arithmetic Coding

Arithmetic coding offers a way to compress data and can be useful for data sources
having a small alphabet. The length of an arithmetic code, instead of being fixed relative
to the number of symbols being encoded, depends on the statistical frequency with which
the source produces each symbol from its alphabet. For long sequences from sources
having skewed distributions and small alphabets, arithmetic coding compresses better
than Huffman coding.

The arithenco and arithdeco functions support arithmetic coding and decoding.

Represent Arithmetic Coding Parameters

Arithmetic coding requires statistical information about the source of the data being
encoded. In particular, the counts input argument in the arithenco and arithdeco
functions lists the frequency with which the source produces each symbol in its alphabet.
You can determine the frequencies by studying a set of test data from the source. The set
of test data can have any size you choose, as long as each symbol in the alphabet has a
nonzero frequency.

For example, before encoding data from a source that produces 10 x's, 10 y's, and 80 z's in
a typical 100-symbol set of test data, define

counts = [10 10 80];

Alternatively, if a larger set of test data from the source contains 22 x's, 23 y's, and 185
z's, then define

counts = [22 23 185];

Create and Decode an Arithmetic Code

Encode and decode a sequence from a source having three symbols.

Create a sequence vector containing symbols from the set of {1,2,3}.

seq = [3 3 1 3 3 3 3 3 2 3];

Set the counts vector to define an encoder that produces 10 ones, 20 twos, and 70 threes
from a typical 100-symbol set of test data.

6-264

 Arithmetic Coding

counts = [10 20 70];

Apply the arithmetic encoder and decoder functions.

code = arithenco(seq,counts);

dseq = arithdeco(code,counts,length(seq));

Verify that the decoder output matches the original input sequence.

isequal(seq,dseq)

ans =

 logical

 1

6-265

6 System Design

Quantization

In this section...

“Represent Partitions” on page 6-266
“Represent Codebooks” on page 6-266
“Determine Which Interval Each Input Is In” on page 6-267
“Optimize Quantization Parameters” on page 6-267
“Quantize a Signal” on page 6-269

Represent Partitions

Scalar quantization is a process that maps all inputs within a specified range to a
common value. This process maps inputs in a different range of values to a different
common value. In effect, scalar quantization digitizes an analog signal. Two parameters
determine a quantization: a partition and a codebook.

A quantization partition defines several contiguous, nonoverlapping ranges of values
within the set of real numbers. To specify a partition in the MATLAB environment, list
the distinct endpoints of the different ranges in a vector.

For example, if the partition separates the real number line into the four sets

• {x: x ≤ 0}
• {x: 0< x ≤ 1}
• {x: 1 < x ≤ 3}
• {x: 3 < x}

then you can represent the partition as the three-element vector

partition = [0,1,3];

The length of the partition vector is one less than the number of partition intervals.

Represent Codebooks

A codebook tells the quantizer which common value to assign to inputs that fall into each
range of the partition. Represent a codebook as a vector whose length is the same as the
number of partition intervals. For example, the vector

6-266

 Quantization

codebook = [-1, 0.5, 2, 3];

is one possible codebook for the partition [0,1,3].

Determine Which Interval Each Input Is In

The quantiz function also returns a vector that tells which interval each input is in. For
example, the output below says that the input entries lie within the intervals labeled 0,
6, and 5, respectively. Here, the 0th interval consists of real numbers less than or equal
to 3; the 6th interval consists of real numbers greater than 8 but less than or equal to 9;
and the 5th interval consists of real numbers greater than 7 but less than or equal to 8.

partition = [3,4,5,6,7,8,9];

index = quantiz([2 9 8],partition)

The output is

index =

 0

 6

 5

If you continue this example by defining a codebook vector such as

codebook = [3,3,4,5,6,7,8,9];

then the equation below relates the vector index to the quantized signal quants.

quants = codebook(index+1);

This formula for quants is exactly what the quantiz function uses if you instead phrase
the example more concisely as below.

partition = [3,4,5,6,7,8,9];

codebook = [3,3,4,5,6,7,8,9];

[index,quants] = quantiz([2 9 8],partition,codebook);

Optimize Quantization Parameters

• “Section Overview” on page 6-268
• “Example: Optimizing Quantization Parameters” on page 6-268

6-267

6 System Design

Section Overview

Quantization distorts a signal. You can reduce distortion by choosing appropriate
partition and codebook parameters. However, testing and selecting parameters for
large signal sets with a fine quantization scheme can be tedious. One way to produce
partition and codebook parameters easily is to optimize them according to a set of so-
called training data.

Note: The training data you use should be typical of the kinds of signals you will actually
be quantizing.

Example: Optimizing Quantization Parameters

The lloyds function optimizes the partition and codebook according to the Lloyd
algorithm. The code below optimizes the partition and codebook for one period of a
sinusoidal signal, starting from a rough initial guess. Then it uses these parameters to
quantize the original signal using the initial guess parameters as well as the optimized
parameters. The output shows that the mean square distortion after quantizing is much
less for the optimized parameters. The quantiz function automatically computes the
mean square distortion and returns it as the third output parameter.

% Start with the setup from 2nd example in "Quantizing a Signal."

t = [0:.1:2*pi];

sig = sin(t);

partition = [-1:.2:1];

codebook = [-1.2:.2:1];

% Now optimize, using codebook as an initial guess.

[partition2,codebook2] = lloyds(sig,codebook);

[index,quants,distor] = quantiz(sig,partition,codebook);

[index2,quant2,distor2] = quantiz(sig,partition2,codebook2);

% Compare mean square distortions from initial and optimized

[distor, distor2] % parameters.

The output is

ans =

 0.0148 0.0024

6-268

 Quantization

Quantize a Signal

• “Scalar Quantization Example 1” on page 6-269
• “Scalar Quantization Example 2” on page 6-269

Scalar Quantization Example 1

The code below shows how the quantiz function uses partition and codebook to map
a real vector, samp, to a new vector, quantized, whose entries are either -1, 0.5, 2, or 3.

partition = [0,1,3];

codebook = [-1, 0.5, 2, 3];

samp = [-2.4, -1, -.2, 0, .2, 1, 1.2, 1.9, 2, 2.9, 3, 3.5, 5];

[index,quantized] = quantiz(samp,partition,codebook);

quantized

The output is below.

quantized =

 Columns 1 through 6

 -1.0000 -1.0000 -1.0000 -1.0000 0.5000 0.5000

 Columns 7 through 12

 2.0000 2.0000 2.0000 2.0000 2.0000 3.0000

 Column 13

 3.0000

Scalar Quantization Example 2

This example illustrates the nature of scalar quantization more clearly. After quantizing
a sampled sine wave, it plots the original and quantized signals. The plot contrasts the
x's that make up the sine curve with the dots that make up the quantized signal. The
vertical coordinate of each dot is a value in the vector codebook.

t = [0:.1:2*pi]; % Times at which to sample the sine function

sig = sin(t); % Original signal, a sine wave

partition = [-1:.2:1]; % Length 11, to represent 12 intervals

codebook = [-1.2:.2:1]; % Length 12, one entry for each interval

[index,quants] = quantiz(sig,partition,codebook); % Quantize.

6-269

6 System Design

plot(t,sig,'x',t,quants,'.')

legend('Original signal','Quantized signal');

axis([-.2 7 -1.2 1.2])

6-270

7

OFDM Modulation

• “OFDM with User-Specified Pilot Indices” on page 7-2
• “SER Simulation for OFDM Link” on page 7-7
• “OFDM with MIMO Simulation” on page 7-10
• “Gray Coded 8-PSK” on page 7-15
• “Configure Eb/No for AWGN Channels with Coding” on page 7-23
• “CPM Phase Tree” on page 7-25
• “Filtered QPSK vs. MSK” on page 7-29
• “GMSK vs. MSK” on page 7-33
• “GMSK vs. MSK” on page 7-37
• “Gray Coded 8-PSK” on page 7-43
• “Soft Decision GMSK Demodulator” on page 7-49
• “16-PSK with Custom Symbol Mapping” on page 7-56
• “General QAM Modulation in an AWGN Channel” on page 7-60
• “FM Modulate and Demodulate a Sinusoidal Signal” on page 7-63
• “Modulate and Demodulate a Streaming Audio Signal” on page 7-66

7 OFDM Modulation

OFDM with User-Specified Pilot Indices

This example shows how to construct an orthogonal frequency division modulation
(OFDM) modulator/demodulator pair and to specify their pilot indices. The OFDM
modulator System object enables you to specify pilot subcarrier indices consistent with
the constraints described in comm.OFDMModulator.info. In this example, for OFDM
transmission over a 3x2 channel, pilot indices are created for each of the three transmit
antennas. Additionally, the pilot indices differ between odd and even symbols.

Create an OFDM modulator object having five symbols, three transmit antennas, and
length six windowing.

ofdmMod = comm.OFDMModulator('FFTLength',256, ...

 'NumGuardBandCarriers',[12; 11], ...

 'NumSymbols', 5, ...

 'NumTransmitAntennas', 3, ...

 'PilotInputPort',true, ...

 'Windowing', true, ...

 'WindowLength', 6);

Specify pilot indices for even and odd symbols for the first transmit antenna.

pilotIndOdd = [20; 58; 96; 145; 182; 210];

pilotIndEven = [35; 73; 111; 159; 197; 225];

pilotIndicesAnt1 = cat(2, pilotIndOdd, pilotIndEven, pilotIndOdd, ...

 pilotIndEven, pilotIndOdd);

Generate pilot indices for the second and third antennas based on the indices specified
for the first antenna. Concatenate the indices for the three antennas and assign them to
the PilotCarrierIndices property.

pilotIndicesAnt2 = pilotIndicesAnt1 + 5;

pilotIndicesAnt3 = pilotIndicesAnt1 - 5;

ofdmMod.PilotCarrierIndices = cat(3, pilotIndicesAnt1, pilotIndicesAnt2, pilotIndicesAnt3);

Create on OFDM demodulator with two receive antennas based on the existing OFDM
modulator System object. Determine the data and pilot dimensions using the info
function.

ofdmDemod = comm.OFDMDemodulator(ofdmMod);

7-2

 OFDM with User-Specified Pilot Indices

ofdmDemod.NumReceiveAntennas = 2;

dims = info(ofdmMod)

dims =

 struct with fields:

 DataInputSize: [215 5 3]

 PilotInputSize: [6 5 3]

 OutputSize: [1360 3]

Generate data and pilot symbols for the OFDM modulator given the array sizes specified
in modDim.

dataIn = complex(randn(dims.DataInputSize), randn(dims.DataInputSize));

pilotIn = complex(randn(dims.PilotInputSize), randn(dims.PilotInputSize));

Apply OFDM modulation to the data and pilots.

modOut = ofdmMod(dataIn,pilotIn);

Pass the modulated data through a 3x2 random channel.

chanGain = complex(randn(3,2), randn(3,2));

chanOut = modOut * chanGain;

Demodulate the received data using the OFDM demodulator object.

[dataOut,pilotOut] = ofdmDemod(chanOut);

Show the resource mapping for the three transmit antennas. The gray lines in the figure
show the placement of custom nulls to avoid interference among antennas.

showResourceMapping(ofdmMod)

7-3

7 OFDM Modulation

7-4

 OFDM with User-Specified Pilot Indices

7-5

7 OFDM Modulation

For the first transmit and first receive antenna pair, demonstrate that the input pilot
signal matches the input pilot signal.

pilotCompare = abs(pilotIn(:,:,1)*chanGain(1,1)) - abs(pilotOut(:,:,1,1));

max(pilotCompare(:) < 1e-10)

ans =

 logical

 1

7-6

 SER Simulation for OFDM Link

SER Simulation for OFDM Link

This example shows how to perform a symbol error rate (SER) simulation of an over-the-
air OFDM communication link.

A basic communications link using OFDM modulation with QPSK symbols is simulated.
There is a single transmit and a single receive antenna.

Create QPSK modulator and demodulator objects.

qpskMod = comm.QPSKModulator;

qpskDemod = comm.QPSKDemodulator;

Create a default OFDM modulator and demodulator pair.

ofdmMod = comm.OFDMModulator;

ofdmDemod = comm.OFDMDemodulator;

Use the info function to determine the required input dimensions for the OFDM
modulator.

modDim = info(ofdmMod)

modDim =

 struct with fields:

 DataInputSize: [53 1]

 OutputSize: [80 1]

Set the number of frames. Determine the number of OFDM symbols per frame from the
modDim.DataInputSize array.

nFrames = 100;

nSymbolsPerFrame = modDim.DataInputSize(1);

Create an error rate counter with a reset input port. Initialize the symbol error rate
vector, SER.

errRate = comm.ErrorRate('ResetInputPort',true);

SER = zeros(nFrames,1);

7-7

7 OFDM Modulation

Run the simulation over 100 OFDM frames (5300 symbols). During loop execution,
generate a random data vector with length equal to the required number of symbols per
frame, Apply QPSK modulation and then apply OFDM modulation. Pass the OFDM
modulated data through the AWGN channel and then apply OFDM demodulation.
Demodulate the resultant QPSK data and compare it with the original data to determine
the symbol error rate.

for k = 1:nFrames

 % Generate random data for each OFDM frame

 data = randi([0 3],nSymbolsPerFrame,1);

 % Apply QPSK modulation

 txQPSK = qpskMod(data);

 % Apply OFDM modulation

 txSig = ofdmMod(txQPSK);

 % Pass OFDM signal through AWGN channel

 rxSig = awgn(txSig,23);

 % Demodulate OFDM data

 rxQPSK = ofdmDemod(rxSig);

 % Demodulate QPSK data

 rxData = qpskDemod(rxQPSK);

 % Compute BER

 errors = errRate(data,rxData,1);

 SER(k) = errors(1);

end

Display the symbol error data for the first ten frames.

SER(1:10)

ans =

 0.0377

 0.0566

 0.0566

 0.1132

 0.0755

 0.0566

7-8

 SER Simulation for OFDM Link

 0.0566

 0.0566

 0.0755

 0.1509

7-9

7 OFDM Modulation

OFDM with MIMO Simulation

This example shows how to use an OFDM modulator and demodulator in a simple, 2x2
MIMO error rate simulation. The OFDM parameters are based on the 802.11n standard.

Create a QPSK modulator and demodulator pair.

qpskMod = comm.QPSKModulator;

qpskDemod = comm.QPSKDemodulator;

Create an OFDM modulator and demodulator pair with user-specified pilot indices, an
inserted DC null, two transmit antennas, and two receive antennas. Specify pilot indices
that vary across antennas.

ofdmMod = comm.OFDMModulator('FFTLength',128,'PilotInputPort',true,...

 'PilotCarrierIndices',cat(3,[12; 40; 54; 76; 90; 118],...

 [13; 39; 55; 75; 91; 117]),'InsertDCNull',true,...

 'NumTransmitAntennas',2);

ofdmDemod = comm.OFDMDemodulator(ofdmMod);

ofdmDemod.NumReceiveAntennas = 2;

Show the resource mapping of pilot subcarriers for each transmit antenna. The gray lines
in the figure denote the insertion of null subcarriers to minimize pilot signal interference.

showResourceMapping(ofdmMod)

7-10

 OFDM with MIMO Simulation

7-11

7 OFDM Modulation

Determine the dimensions of the OFDM modulator by using the info method.

ofdmModDim = info(ofdmMod);

numData = ofdmModDim.DataInputSize(1); % Number of data subcarriers

numSym = ofdmModDim.DataInputSize(2); % Number of OFDM symbols

numTxAnt = ofdmModDim.DataInputSize(3); % Number of transmit antennas

Generate data symbols to fill 100 OFDM frames.

nframes = 100;

data = randi([0 3],nframes*numData,numSym,numTxAnt);

Apply QPSK modulation to the random symbols and reshape the resulting column vector
to match the OFDM modulator requirements.

7-12

 OFDM with MIMO Simulation

modData = qpskMod(data(:));

modData = reshape(modData,nframes*numData,numSym,numTxAnt);

Create an error rate counter.

errorRate = comm.ErrorRate;

Simulate the OFDM system over 100 frames assuming a flat, 2x2, Rayleigh fading
channel. Remove the effects of multipath fading using a simple, least squares solution,
and demodulate the OFDM waveform and QPSK data. Generate error statistics by
comparing the original data with the demodulated data.

for k = 1:nframes

 % Find row indices for kth OFDM frame

 indData = (k-1)*ofdmModDim.DataInputSize(1)+1:k*numData;

 % Generate random OFDM pilot symbols

 pilotData = complex(rand(ofdmModDim.PilotInputSize), ...

 rand(ofdmModDim.PilotInputSize));

 % Modulate QPSK symbols using OFDM

 dataOFDM = ofdmMod(modData(indData,:,:),pilotData);

 % Create flat, i.i.d., Rayleigh fading channel

 chGain = complex(randn(2,2),randn(2,2))/sqrt(2); % Random 2x2 channel

 % Pass OFDM signal through Rayleigh and AWGN channels

 receivedSignal = awgn(dataOFDM*chGain,30);

 % Apply least squares solution to remove effects of fading channel

 rxSigMF = chGain.' \ receivedSignal.';

 % Demodulate OFDM data

 receivedOFDMData = ofdmDemod(rxSigMF.');

 % Demodulate QPSK data

 receivedData = qpskDemod(receivedOFDMData(:));

 % Compute error statistics

 dataTmp = data(indData,:,:);

 errors = errorRate(dataTmp(:),receivedData);

end

Display the error statistics.

7-13

7 OFDM Modulation

fprintf('\nSymbol error rate = %d from %d errors in %d symbols\n',errors)

Symbol error rate = 9.471154e-02 from 1970 errors in 20800 symbols

7-14

 Gray Coded 8-PSK

Gray Coded 8-PSK

This example shows a communications system with Gray-coded 8-ary phase shift keying
(8-PSK) modulation using communications System objects. Gray coding is a technique
that multilevel modulation schemes often use to minimize the bit error rate. It consists
of ordering modulation symbols so that the binary representations of adjacent symbols
differ by only one bit.

In this section...

“Introduction” on page 7-15
“Initialization” on page 7-17
“Stream Processing Loop” on page 7-19
“Cleanup” on page 7-20
“Conclusions” on page 7-20

Introduction

This example modulates data using the 8-PSK method. The data passes through
an AWGN channel, and is demodulated using an 8-PSK demodulator. An error rate
calculator System object measures the symbol and bit error rates.

In this communications system, the PSK Modulator System object:

• Accepts binary-valued inputs that represent integers between 0 and M – 1. M is the
modulation order and is equal to 8 for 8-PSK modulation.

• Maps binary representations to constellation points using Gray-coded ordering.
• Produces unit-magnitude complex phasor outputs, with evenly spaced phases between

0 and 2π(M – 1)/M.

The following table indicates the relationship between binary representations in the
input and phasors in the output. The second column of the table is an intermediate
representation that the System object uses in its computations.

Modulator Input Gray-Coded Ordering Modulator Output

000 0 exp(0)

7-15

7 OFDM Modulation

Modulator Input Gray-Coded Ordering Modulator Output

001 1 exp(jπ/4)
010 3 exp(j3π/4)
011 2 exp(jπ/2) = exp(j2π/4)
100 7 exp(j7π/4)
101 6 exp(j3π/2) = exp(j6π/4)
110 4 exp(jπ) = exp(j4π/4)
111 5 exp(j5π/4)

The table below sorts the first two columns from the previous table, according to the
output values. This sorting makes it clearer that there is only a 1 bit difference between
neighboring symbols. In the following figure, notice that the numbers in the second
column of the table appear in counterclockwise order.

Modulator Output Modulator Input

exp(0) 000

exp(jπ/4) 001

exp(jπ/2) = exp(j2π/4) 011

exp(j3π/4) 010

exp(jπ) = exp(j4π/4) 110

exp(j5π/4) 111

exp(j3π/2) = exp(j6π/4) 101

exp(j7π/4) 100

7-16

 Gray Coded 8-PSK

Initialization

This section of the code initializes the system variables. It also creates and configures the
System objects used in this example.

Set the modulation order to 8 for 8-PSK modulation. Run the simulation until either the
specified maximum number of bit errors (maxNumErrs) or the maximum number of bits
(maxNumBits) is reached. This simulation iterates over a number of bit energy to noise
power spectral density Eb/No values.

M = 8; % Modulation order

SamplesPerFrame = 10000; % Symbols processed for each iteration of the

 % stream processing loop

% Initialize variables used to determine when to stop processing bits

maxNumErrs=100;

maxNumBits=1e8;

% Since the AWGN Channel as well as the RANDI function uses the default

% random stream, the following commands are executed so that the results

% will be repeatable, i.e. same results will be obtained for every run of

% the example. The default stream will be restored at the end of the

7-17

7 OFDM Modulation

% example.

prevState = rng;

rng(529558);

Create an integer to bit converter (hInt2Bit) and a bit to integer converter (hBit2Int)
System object to convert the randomly generated integer data to bits and the
demodulated data bits back to integers

hInt2Bit = comm.IntegerToBit('BitsPerInteger',log2(M), ...

 'OutputDataType','uint8');

hBit2Int = comm.BitToInteger('BitsPerInteger',log2(M), ...

 'OutputDataType','uint8');

Create and configure a PSK modulator (hMod) System object to map the binary input
data to an 8-PSK gray coded constellation as well as a matching PSK demodulator
(hDemod) System object

hMod = comm.PSKModulator('ModulationOrder',M, ...

 'SymbolMapping','gray', ...

 'PhaseOffset',0, ...

 'BitInput',true);

hDemod = comm.PSKDemodulator('ModulationOrder',M, ...

 'SymbolMapping','gray', ...

 'PhaseOffset',0, ...

 'BitOutput',true, ...

 'OutputDataType','uint8', ...

 'DecisionMethod','Hard decision');

Create an AWGN channel System object to add additive white Gaussian noise to the
modulated signal. The noise method is appropriately selected so it specifies the bit
energy to noise power spectral density in the stream processing loop. Because the PSK
modulator generates symbols with 1 Watt of power, the signal power property of the
AWGN channel is also set to 1.

hChan = comm.AWGNChannel('NoiseMethod','Signal to noise ratio (Eb/No)', ...

 'BitsPerSymbol',log2(M), ...

 'SignalPower',1);

Create a symbol error rate calculator (hSymError) and a bit error rate calculator
(hBitError) System object to compare the demodulated integer and bit data with the
original source data. This comparison yields symbol error and bit error statistics. The
output of the error rate calculator System object is a three-element vector containing the
calculated error rate, the number of errors observed, and the amount of data processed.

7-18

 Gray Coded 8-PSK

The simulation uses the three-element vector generated by hBitError to determine when
to stop the simulation.

hSymError = comm.ErrorRate;

hBitError = comm.ErrorRate;

Stream Processing Loop

This section of the code calls the processing loop where data is gray coded, modulated,
and demodulated using 8-PSK modulation. The loop simulates the communications
system for Eb/No values in the range 0dB to 12dB in steps of 2dB.

% For each Eb/No value, simulation stops when either the maximum number of

% errors (maxNumErrs) or the maximum number of bits (maxNumBits) processed

% by the bit error rate calculator System object is reached.

EbNoVec = 0:2:12; % Eb/No values to simulate

SERVec = zeros(size(EbNoVec)); % Initialize SER history

BERVec = zeros(size(EbNoVec)); % Initialize BER history

for p = 1:length(EbNoVec)

 % Reset System objects

 reset(hSymError);

 reset(hBitError);

 hChan.EbNo = EbNoVec(p);

 % Reset SER / BER for the current Eb/No value

 SER = zeros(3,1); % Symbol Error Rate

 BER = zeros(3,1); % Bit Error Rate

 while (BER(2)<maxNumErrs) && (BER(3)<maxNumBits)

 % Generate random data

 txSym = randi([0 M-1], SamplesPerFrame, 1, 'uint8');

 txBits = step(hInt2Bit, txSym); % Convert symbols to bits

 tx = step(hMod, txBits); % Modulate

 rx = step(hChan, tx); % Add white Gaussian noise

 rxBits = step(hDemod, rx); % Demodulate

 rxSym = step(hBit2Int, rxBits); % Convert bits back to symbols

 % Calculate error rate

 SER = step(hSymError, txSym, rxSym); % Symbol Error Rate

 BER = step(hBitError, txBits, rxBits); % Bit Error Rate

 end

 % Save history of SER and BER values

 SERVec(p) = SER(1);

 BERVec(p) = BER(1);

end

7-19

7 OFDM Modulation

Cleanup

Restore the default stream.

rng(prevState)

Conclusions

Analyze the data that the example produces and compare theoretical performance with
simulation performance. The theoretical symbol error probability of MPSK is

P M
E

N M
E

s() erfc sin= Ê
ËÁ

ˆ
¯̃

Ê

Ë
ÁÁ

ˆ

¯
˜̃

0

p

where erfc is the complementary error function, Es/N0 is the ratio of energy in a symbol to
noise power spectral density, and M is the number of symbols.

To determine the bit error probability, convert the symbol error probability, PE, to its
bit error equivalent. There is no general formula for the symbol to bit error conversion.
Nevertheless, upper and lower limits are easy to establish. The actual bit error
probability, Pb, can be shown to be bounded by

P M

M
P

M

M
P M

E
b E

()

log

/
()

2

2

1
£ £

-

The lower limit corresponds to the case where the symbols have undergone Gray coding.
The upper limit corresponds to the case of pure binary coding.

The following script plots the simulated symbol error rates (SERVec) and bit error rates
(BERVec) together with the theoretical symbol error and bit error probabilities.

Calculate theoretical error probabilities.

[theorBER, theorSER] = berawgn(EbNoVec, 'psk', M, 'nondiff');

Plot the results.

7-20

 Gray Coded 8-PSK

figure;

semilogy(EbNoVec,SERVec,'o', EbNoVec,BERVec,'*', ...

 EbNoVec,theorSER,'-', EbNoVec,theorBER,'-');

legend ('Symbol error rate', 'Bit error rate', ...

 'Theoretical Symbol error rate', 'Theoretical Bit error rate', ...

 'Location','SouthWest');

xlabel ('Eb/No (dB)'); ylabel('Error Probability');

title ('Symbol and Bit Error Probability'); grid on;

As a further exercise, you can compare Gray coding with pure binary coding by modifying
the PSK modulator and PSK demodulator System objects so that their constellation
ordering parameters are 'Binary' instead of 'Gray'. Setting this property and re-running
the simulation should generate results similar to the following:

7-21

7 OFDM Modulation

7-22

 Configure Eb/No for AWGN Channels with Coding

Configure Eb/No for AWGN Channels with Coding

This example shows how to set the bit energy to noise density ratio (Eb/No) for
communication links employing channel coding.

Specify the codeword and message length for a Reed-Solomon code. Specify the
modulation order.

N = 15; % R-S codeword length in symbols

K = 9; % R-S message length in symbols

M = 16; % Modulation order

Construct a (15,9) Reed-Solomon encoder and a 16-PSK modulator. Specify the objects so
that they accept bit inputs.

rsEncoder = comm.RSEncoder('CodewordLength',N,'MessageLength',K, ...

 'BitInput',true);

pskModulator = comm.PSKModulator('ModulationOrder',M,'BitInput',true);

Create the corresponding Reed-Solomon decoder and 16-PSK demodulator objects.

rsDecoder = comm.RSDecoder('CodewordLength',N,'MessageLength',K, ...

 'BitInput',true);

pskDemodulator = comm.PSKDemodulator('ModulationOrder',M,'BitOutput',true);

Calculate the Reed-Solomon code rate based on the ratio of message symbols to the
codeword length. Determine the bits per symbol for the PSK modulator.

codeRate = K/N;

bitsPerSymbol = log2(M);

Specify the uncoded Eb/No in dB. Convert the uncoded Eb/No to the corresponding coded
Eb/No using the code rate.

UncodedEbNo = 6;

CodedEbNo = UncodedEbNo + 10*log10(codeRate);

Construct an AWGN channel taking into account the number of bits per symbol. Set the
EbNo property of channel to the coded Eb/No.

channel = comm.AWGNChannel('BitsPerSymbol',bitsPerSymbol);

channel.EbNo = CodedEbNo;

7-23

7 OFDM Modulation

Set the total number of errors and bits for the simulation. For accuracy, the simulation
should run until a sufficient number of bit errors are encountered. The number of total
bits is used to ensure that the simulation does not run too long.

totalErrors = 100;

totalBits = 1e6;

Construct an error rate calculator System object™ and initialize the error rate vector.

errorRate = comm.ErrorRate;

errorVec = zeros(3,1);

Run the simulation to determine the BER.

while errorVec(2) < totalErrors && errorVec(3) < totalBits

 % Generate random bits

 dataIn = randi([0,1],360,1);

 % Use the RS (15,9) encoder to add error correction capability

 dataEnc = rsEncoder(dataIn);

 % Apply 16-PSK modulation

 txSig = pskModulator(dataIn);

 % Pass the modulated data through the AWGN channel

 rxSig = channel(txSig);

 % Demodulate the received signal

 demodData = pskDemodulator(rxSig);

 % Decode the demodulated data with the RS (15,9) decoder

 dataOut = rsDecoder(demodData);

 % Collect error statistics

 errorVec = errorRate(dataIn,demodData);

end

Display the resultant bit error rate.

ber = errorVec(1)

ber =

 0.0935

7-24

 CPM Phase Tree

CPM Phase Tree

In this section...

“Structure of the Example” on page 7-25
“Results and Displays” on page 7-26
“Exploring the Example” on page 7-28

This model shows how to use the Eye Diagram block to view the phase trajectory, phase
tree, and instantaneous frequency of a CPM modulated signal.

Structure of the Example

This example, doc_cpm_phase_tree, uses various Communications System Toolbox, DSP
System Toolbox, and Simulink blocks to model a baseband CPM signal.

In particular, the example model includes these blocks:

• Random Integer Generator block
• Integer to Bit Converter block
• CPM Modulator Baseband block
• Complex to Magnitude-Angle block
• Phase Unwrap block
• Zero-Order Hold block
• Discrete Transfer Fcn block
• Gain block
• Multiple copies of the Eye Diagram block

7-25

7 OFDM Modulation

Results and Displays

When you run the example, several Eye Diagram blocks show how the CPM signal
changes over time:

• The Modulated Signal block displays the in-phase and quadrature signals. Double-
click the block to open the scope. The modulated signal is easy to see in the eye
diagram only when the Modulation index parameter in the CPM Modulator
Baseband block is set to 0.5. If you set the Modulation index to another value, for
example 2/3, the features of the modulated signal are difficult to decipher for this
more complex modulation. Unwrapping the phase and plotting it is another way to
illustrate these more complex CPM modulated signals.

• The Phase Trajectory block displays the CPM phase. Double-click the block to open
the scope. The Phase Trajectory block reveals that the signal phase is also difficult to
view because it drifts with the data input to the modulator.

• The Phase Tree block displays the phase tree of the signal. The CPM phase is
processed by a few simple blocks to make the CPM pulse shaping easier to view. This

7-26

 CPM Phase Tree

processing holds the phase at the beginning of the symbol interval and subtracts it
from the signal. This resets the phase to zero every three symbols. The resulting plot
shows the many phase trajectories that can be taken by the signal from any given
symbol epoch.

• The Instantaneous Frequency block displays the instantaneous frequency of the
signal. The CPM phase is differentiated to produce the frequency deviation of the
signal. Viewing the CPM frequency signal enables you to observe the frequency
deviation qualitatively, as well as make quantitative observations, such as measuring
peak frequency deviation.

7-27

7 OFDM Modulation

Exploring the Example

To learn more about the example, try changing the following parameters in the CPM
Modulator Baseband block:

• Change Pulse length to a value between 1 and 6.
• Change Frequency pulse shape to one of the other settings, such as Rectangular

or Gaussian.

You can observe the effect of changing these parameters on the phase tree and
instantaneous frequency of the modulated signal.

7-28

 Filtered QPSK vs. MSK

Filtered QPSK vs. MSK

In this section...

“Structure of the Example” on page 7-29
“Results and Displays” on page 7-30

This model shows filtered quadrature phase shift keying (QPSK) and minimum shift
keying (MSK) modulation schemes and visually compare them.

Structure of the Example

This example, doc_qpsk_vs_msk, uses Communications System Toolbox blocks to model
filtered QPSK and MSK modulation.

The example model includes these blocks:

• Random Integer Generator block (for QPSK)
• Bernoulli Binary Generator block (for MSK)
• QPSK Modulator Baseband block
• MSK Modulator Baseband block
• Raised Cosine Transmit Filter block
• AWGN Channel block
• Eye Diagram block

7-29

7 OFDM Modulation

Results and Displays

The example uses eye diagram blocks to show the eye diagrams of filtered QPSK and
MSK signals plus noise. You can observe that:

1 In filtered QPSK, the values of both the in-phase and quadrature components of the
signal are permitted to change at any symbol interval.

7-30

 Filtered QPSK vs. MSK

2 However, for MSK, the symbol interval is half that for QPSK, but the in-phase and
quadrature components change values in alternate symbol epochs. Therefore, the
ideal sampling time for QPSK is 0.5, 1.5, 2.5,..., while the ideal sampling period for
MSK is 0.5, 1.5, 2.5,... for the in-phase signal and 1, 2, 3,... for the quadrature signal.

7-31

7 OFDM Modulation

7-32

 GMSK vs. MSK

GMSK vs. MSK

In this section...

“Structure of the Example” on page 7-33
“Results and Displays” on page 7-34

This model shows how to visually compare Gaussian minimum shift keying (GMSK) and
minimum shift keying (MSK) modulation schemes.

Structure of the Example

The example model, doc_gmsk_vs_msk, includes these blocks:

• Random Integer Generator block, which provides a source of uniformly
distributed random integers in the range [0, M-1], where M is the constellation size of
the GMSK or MSK signal

• Unipolar to Bipolar Converter block
• GMSK Modulator Baseband block
• MSK Modulator Baseband block
• AWGN Channel block
• Eye Diagram block

7-33

7 OFDM Modulation

Results and Displays

The example illustrates the difference between the two modulation schemes. The Eye
Diagram blocks show the eye diagrams of the noisy GMSK and MSK signals.

7-34

 GMSK vs. MSK

7-35

7 OFDM Modulation

The eye diagrams show the similarity between the GMSK and MSK signals when you
set the Pulse length of the GMSK Modulator Baseband block to 1. Setting the Pulse
length to 3 or 5 enables you to view the difference that a partial response modulation
can have on the eye diagram. The number of paths increases, showing that the CPM
waveform depends on values of the previous symbols as well as the present symbol. You
can change the pulse length to 2 or 4, but you should change the Phase offset to pi/4
for a better view of the modulated signal. In order to more clearly view the Gaussian
pulse shape, you must use scopes that enable you to view the phase of the signal, as
described in the “CPM Phase Tree” on page 7-25 example.

7-36

 GMSK vs. MSK

GMSK vs. MSK

Compare, using eye diagrams, Gaussian minimum shift keying (GMSK) and minimum
shift keying (MSK) modulation schemes.

Set the samples per symbol variable.

sps = 8;

Generate random binary data.

data = randi([0 1],1000,1);

Create GMSK and MSK modulators that accept binary inputs. Set the PulseLength
property of the GMSK modulator to 1.

gmskMod = comm.GMSKModulator('BitInput',true,'PulseLength',1, ...

 'SamplesPerSymbol',sps);

mskMod = comm.MSKModulator('BitInput',true,'SamplesPerSymbol',sps);

Modulate the data using the GMSK and MSK modulators.

modSigGMSK = gmskMod(data);

modSigMSK = mskMod(data);

Pass the modulated signals through an AWGN channel having an SNR of 30 dB.

rxSigGMSK = awgn(modSigGMSK,30);

rxSigMSK = awgn(modSigMSK,30);

Plot the eye diagrams of the noisy signals. With the GMSK pulse length set to 1, the eye
diagrams are nearly identical.

eyediagram(rxSigGMSK,sps,1,sps/2)

7-37

7 OFDM Modulation

eyediagram(rxSigMSK,sps,1,sps/2)

7-38

 GMSK vs. MSK

Set the PulseLength property of hGMSK to 3. Because the property is nontunable, the
object must be released first.

release(gmskMod)

gmskMod.PulseLength = 3;

7-39

7 OFDM Modulation

Generate a modulated signal using the updated GMSK modulator object and pass it
through the AWGN channel.

modSigGMSK = gmskMod(data);

rxSigGMSK = awgn(modSigGMSK,30);

Plot the eye diagram of the GMSK signal. The increased pulse length results in an
increase in the number of paths showing that the CPM waveform depends on values of
the previous symbols as well as the present symbol.

eyediagram(rxSigGMSK,sps,1,sps/2)

7-40

 GMSK vs. MSK

Experiment by changing the PulseLength parameter of hGMSK to other values. If you
set the property to an even number, you should set hGMSK.InitialPhaseOffset to
pi/4 and the offset argument of the eyediagram function from sps/2 to 0 for a better
view of the modulated signal. In order to more clearly view the Gaussian pulse shape,

7-41

7 OFDM Modulation

you must use scopes that display the phase of the signal, as described in the CPM Phase
Tree example.

7-42

../ug/cpm-phase-tree.html
../ug/cpm-phase-tree.html

 Gray Coded 8-PSK

Gray Coded 8-PSK

In this section...

“Structure of the Example” on page 7-43
“Gray-Coded M-PSK Modulation” on page 7-44
“Exploring the Example” on page 7-46
“Simulation Results” on page 7-47
“Comparison with Pure Binary Coding and Theory” on page 7-48

This model, doc_gray_code, shows a communications link using Gray-coded 8-PSK
modulation. Gray coding is a technique often used in multilevel modulation schemes
to minimize the bit error rate by ordering modulation symbols so that the binary
representations of adjacent symbols differ by only one bit.

Structure of the Example

The example model includes these blocks:

• The Random Integer Generator block serves as the source, producing a sequence
of integers.

• The Integer to Bit Converter block converts each integer into a corresponding
binary representation.

• The AWGN Channel block adds white Gaussian noise to the modulated data.
• The M-PSK Demodulator Baseband block demodulates the corrupted data.
• The Bit to Integer Converter block converts each binary representation to a

corresponding integer.
• One copy of the Error Rate Calculation block (labeled Error Rate

Calculation1 in this model) compares the demodulated integer data with the
original source data, yielding symbol error statistics. The output of the Error Rate
Calculation block is a three-element vector containing the calculated error rate, the
number of errors observed, and the amount of data processed.

• Another copy of the Error Rate Calculation library block (labeled Error Rate
Calculation2 in this model) compares the demodulated binary data with the binary
representations of the source data, yielding bit error statistics.

7-43

7 OFDM Modulation

Gray-Coded M-PSK Modulation

In this model, the M-PSK Modulator Baseband block:

• Accepts binary-valued inputs that represent integers between 0 and M − 1, where M
is the alphabet size

• Maps binary representations to constellation points using a Gray-coded ordering
• Produces unit-magnitude complex phasor outputs, with evenly spaced phases between

0 and 2π(M − 1)/M

7-44

 Gray Coded 8-PSK

The table indicates which binary representations in the input correspond to which
phasors in the output. The second column of the table is an intermediate representation
that the block uses in its computations.

Modulator Input Gray-Coded Ordering Modulator Output

000 0 exp(0) = 1
001 1 exp(jπ/4)
010 3 exp(j3π/4)
011 2 exp(j2π/4) = exp(jπ/2)
100 7 exp(j7π/4)
101 6 exp(j6π/4) = exp(j3π/2)
110 4 exp(j4π/4) = exp(jπ)
111 5 exp(j5π/4)

The table below sorts the first two columns of the table above, according to the output
values. This sorting makes it clearer that the overall effect of this subsystem is a Gray
code mapping, as shown in the figure below. Notice that the numbers in the second
column of the table below appear in counterclockwise order in the figure.

Modulator Output Modulator Input

exp(0) 000

exp(jπ/4) 001

exp(j2π/4) = exp(jπ/2) 011

exp(j3π/4) 010

exp(j4π/4) = exp(jπ) 110

exp(j5π/4) 111

exp(j6π/4) = exp(j3π/2) 101

exp(j7π/4) 100

7-45

7 OFDM Modulation

Exploring the Example

You can analyze the data that the example produces to compare theoretical performance
with simulation performance.

The theoretical symbol error probability of MPSK is

P M
E

N M
E

s() erfc sin= Ê
ËÁ

ˆ
¯̃

Ê

Ë
ÁÁ

ˆ

¯
˜̃

0

p

where erfc is the complementary error function, Es/N0 is the ratio of energy in a symbol
to noise power spectral density, and M is the number of symbols.

To determine the bit error probability, the symbol error probability, PE, needs to be
converted to its bit error equivalent. There is no general formula for the symbol to bit
error conversion. Upper and lower limits are nevertheless easy to establish. The actual
bit error probability, Pb, can be shown to be bounded by

P M

M
P

M

M
P M

E
b E

()

log

/
()

2

2

1
£ £

-

7-46

 Gray Coded 8-PSK

The lower limit corresponds to the case where the symbols have undergone Gray coding.
The upper limit corresponds to the case of pure binary coding.

Simulation Results

To test the Gray code modulation scheme in this model, simulate the graycode model for
a range of Eb/N0 values. If you want to study bit error rates but not symbol error rates,
then you can use the bertool graphical user interface as described in “BERTool” on
page 13-39.

The rest of this section studies both the bit and symbol error rates and hence does not
use bertool.

Because increasing the value of Eb/N0 lowers the number of errors produced, the length
of each simulation must be increased to ensure that the statistics of the errors remain
stable.

Using the sim command to run a Simulink simulation from the MATLAB command
window, the following code generates data for symbol error rate and bit error rate curves.
It considers Eb/N0 values in the range 0 dB to 12 dB, in steps of 2 dB.

M = 8;

Tsym = 0.2;

BERVec = [];

SERVec = [];

EbNoVec = [0:2:12];

for n = 1:length(EbNoVec);

 EbNo = EbNoVec(n);

 sim('doc_gray_code') ;

 SERVec(n,:) = graySER;

 BERVec(n,:) = grayBER;

end;

After simulating for the full set of Eb/N0 values, you can plot the results using these
commands:

semilogy(EbNoVec,SERVec(:,1), 'o', EbNoVec, BERVec(:,1), '*');

legend ('Symbol error rate', 'Bit error rate');

xlabel ('Eb/No (dB)'); ylabel('Error Probability');

title ('Symbol and Bit Error Probability');

7-47

7 OFDM Modulation

Comparison with Pure Binary Coding and Theory

As a further exercise, using data obtained from berawgn, you can plot the theoretical
curves on the same axes with the simulation results. You can also compare Gray coding
with pure binary coding, by modifying the M-PSK Modulator Baseband and M-PSK
Demodulator Baseband blocks so that their Constellation ordering parameters are
Binary instead of Gray.

7-48

 Soft Decision GMSK Demodulator

Soft Decision GMSK Demodulator

This model shows a system that includes convolutional coding and GMSK modulation.
The receiver in this model includes two parallel paths, one that uses soft decisions and
another that uses hard decisions. The model uses the bit error rates for the two paths to
illustrate that the soft decision receiver performs better. This is to be expected, because
soft decisions enable the system to retain more information from the demodulation
operation to use in the decoding operation.

In this section...

“Structure of the Example” on page 7-49
“The Serial GMSK Receiver” on page 7-50
“Results and Displays” on page 7-51

Structure of the Example

The example model, doc_gmsk_soft_decision, transmits and receives a coded GMSK
signal.

The key components are:

• A Bernoulli Binary Generator block, which generates binary numbers.
• A Convolutional Encoder block, which encodes the binary numbers using a rate

1/2 convolutional code.
• A GMSK modulator section, which computes the logical difference between successive

bits and modulates the result using the GMSK Modulator Baseband block.
• A GMSK soft demodulator section that implements the detector design proposed

in [1], called a serial receiver. This section of the model produces a noisy bipolar
signal. The section labeled Soft Decisions uses an eight-region partition in the
Quantizing Encoder block to prepare for 3-bit soft-decision decoding using the
Viterbi Decoder block. The section labeled Hard Decisions uses a two-region
partition to prepare for hard-decision Viterbi decoding. Using a two-region partition
here is equivalent to having the demodulator make hard decisions. In each decoding
section, a Delay block aligns codeword boundaries with frame boundaries so that the
Viterbi Decoder block can decode properly. This is necessary because the combined
delay of other blocks in the system is not an integer multiple of the length of a
codeword.

7-49

7 OFDM Modulation

• A pair of Error Rate Calculation blocks, as well as Display blocks that show
the BER for the system with each type of decision.

The Serial GMSK Receiver

The serial GMSK receiver is based on the fact that GMSK can be represented as a
combination of amplitude pulses [2] - [3], and can, therefore, be demodulated with a
matched filter. The GMSK waveform used in this model has a BT product of 0.3 and a
frequency pulse length of 4 symbols. As such, it can be represented by eight different
amplitude pulses, which are shown in Figure 2 of [3]. The matched filter in this model
uses only the largest pulse of the eight, because of its simplicity of implementation. That
same simplicity, however, yields BER performance that is inferior to the more traditional
Viterbi-based demodulator.

7-50

 Soft Decision GMSK Demodulator

Results and Displays

The example model includes these visualizations to illustrate its performance:

• The Display blocks illustrate that the soft decision receiver performs better (that is,
has a smaller BER) than the hard decision receiver.

• The Tx Signal window shows the scatter plot of the signal before the AWGN channel.

• The Rx Signal window shows the scatter plot of the signal after the AWGN channel.

7-51

7 OFDM Modulation

• The Freq Response window shows the frequency response of the GMSK signal before
and after the AWGN channel.

7-52

 Soft Decision GMSK Demodulator

• The Decision Levels window shows, in yellow, the various soft decision levels in the
top plot and the binary hard decisions in the bottom plot. This window also indicates,
in blue, when errors occur.

7-53

7 OFDM Modulation

7-54

 Soft Decision GMSK Demodulator

References

[1] Bjerke, B., J. Proakis, M. Lee, and Z. Zvonar, "A Comparison of GSM Receivers for
Fading Multipath Channels with Adjacent- and Co-Channel Interference," IEEE
J. Select. Areas Commun., Nov. 2000, pp. 2211-2219.

[2] Laurent, Pierre, "Exact and Approximate Construction of Digital Phase Modulations
by Superposition of Amplitude Modulated Pulses (AMP)," IEEE Trans. Comm.,
Vol. COM-34, No. 2, Feb. 1986, pp. 150-160.

[3] Jung, Peter, "Laurent's Representation of Binary Digital Continuous Phase
Modulated Signals with Modulation index 1/2 Revisited", IEEE Trans. Comm.,
Vol. COM-42, No. 2/3/4, Feb./Mar./Apr. 1994, pp. 221-224.

7-55

7 OFDM Modulation

16-PSK with Custom Symbol Mapping

Create 16-PSK modulator and demodulator System objects™ in which custom symbol
mapping is used. Estimate the BER in an AWGN channel and compare the performance
with that of a theoretical Gray-coded PSK system.

Create a custom symbol mapping for the 16-PSK modulation scheme. The 16 integer
symbols must have values which fall between 0 and 15.

custMap = [0 2 4 6 8 10 12 14 15 13 11 9 7 5 3 1];

Create a 16-PSK modulator and demodulator pair having custom symbol mapping
defined by the array, custMap.

pskModulator = comm.PSKModulator(16,'BitInput',true, ...

 'SymbolMapping','Custom', ...

 'CustomSymbolMapping',custMap);

pskDemodulator = comm.PSKDemodulator(16,'BitOutput',true, ...

 'SymbolMapping','Custom', ...

 'CustomSymbolMapping',custMap);

Display the modulator constellation.

constellation(pskModulator)

7-56

 16-PSK with Custom Symbol Mapping

Create an AWGN channel System object for use with 16-ary data.

awgnChannel = comm.AWGNChannel('BitsPerSymbol',log2(16));

Create an error rate object to track the BER statistics.

errorRate = comm.ErrorRate;

Initialize the simulation vectors. The Eb/No is varied from 6 to 18 dB in 1 dB steps.

ebnoVec = 6:18;

ber = zeros(size(ebnoVec));

Estimate the BER by modulating binary data, passing it through an AWGN channel,
demodulating the received signal, and collecting the error statistics.

7-57

7 OFDM Modulation

for k = 1:length(ebnoVec)

 % Reset the error counter for each Eb/No value

 reset(errorRate)

 % Reset the array used to collect the error statistics

 errVec = [0 0 0];

 % Set the channel Eb/No

 awgnChannel.EbNo = ebnoVec(k);

 while errVec(2) < 200 && errVec(3) < 1e7

 % Generate a 1000-symbol frame

 data = randi([0 1],4000,1);

 % Modulate the binary data

 modData = pskModulator(data);

 % Pass the modulated data through the AWGN channel

 rxSig = awgnChannel(modData);

 % Demodulate the received signal

 rxData = pskDemodulator(rxSig);

 % Collect the error statistics

 errVec = errorRate(data,rxData);

 end

 % Save the BER data

 ber(k) = errVec(1);

end

Generate theoretical BER data for an AWGN channel using berawgn.

berTheory = berawgn(ebnoVec,'psk',16,'nondiff');

Plot the simulated and theoretical results. Because the simulated results rely on 16-
PSK modulation that does not use Gray codes, the performance is not as good as that
predicted by theory.

figure

semilogy(ebnoVec,[ber; berTheory])

xlabel('Eb/No (dB)')

ylabel('BER')

grid

legend('Simulation','Theory','location','ne')

7-58

 16-PSK with Custom Symbol Mapping

7-59

7 OFDM Modulation

General QAM Modulation in an AWGN Channel

Transmit and receive data using a nonrectangular 16-ary constellation in the presence of
Gaussian noise. Show the scatter plot of the noisy constellation and estimate the symbol
error rate (SER) for two different signal-to-noise ratios.

Create a 16-QAM constellation based on the V.29 standard for telephone-line modems.

c = [-5 -5i 5 5i -3 -3-3i -3i 3-3i 3 3+3i 3i -3+3i -1 -1i 1 1i];

M = length(c);

Generate random symbols.

data = randi([0 M-1],2000,1);

Modulate the data using the genqammod function. It is necessary to use general QAM
modulation because the custom constellation is not rectangular.

modData = genqammod(data,c);

Pass the signal through an AWGN channel having a 20 dB signal-to-noise ratio (SNR).

rxSig = awgn(modData,20,'measured');

Display a scatter plot of the received signal along with the reference constellation, c.

h = scatterplot(rxSig);

hold on

scatterplot(c,[],[],'r*',h)

grid

7-60

 General QAM Modulation in an AWGN Channel

Demodulate the received signal using the genqamdemod function and determine the
number of symbol errors and the symbol error ratio.

demodData = genqamdemod(rxSig,c);

[numErrors,ser] = symerr(data,demodData)

numErrors =

 1

ser =

7-61

7 OFDM Modulation

 5.0000e-04

Repeat the transmission and demodulation process with an AWGN channel having a
10 dB SNR. Determine the symbol error rate for the reduced signal-to-noise ratio. As
expected, the performance degrades when the SNR is decreased.

rxSig = awgn(modData,10,'measured');

demodData = genqamdemod(rxSig,c);

[numErrors,ser] = symerr(data,demodData)

numErrors =

 462

ser =

 0.2310

7-62

 FM Modulate and Demodulate a Sinusoidal Signal

FM Modulate and Demodulate a Sinusoidal Signal

Modulate and demodulate a sinusoidal signal. Plot the demodulated signal and compare
it to the original signal.

Set the example parameters.

fs = 100; % Sample rate (Hz)

ts = 1/fs; % Sample period (s)

fd = 25; % Frequency deviation (Hz)

Create a sinusoidal input signal with duration 0.5s and frequency 4 Hz.

t = (0:ts:0.5-ts)';

x = sin(2*pi*4*t);

Create an FM modulator System object™.

MOD = comm.FMModulator('SampleRate',fs,'FrequencyDeviation',fd);

FM modulate the input signal and plot its real part. You can see that the frequency of the
modulated signal changes with the amplitude of the input signal.

y = step(MOD,x);

plot(t,[x real(y)])

7-63

7 OFDM Modulation

Demodulate the FM modulated signal.

DEMOD = comm.FMDemodulator('SampleRate',fs,'FrequencyDeviation',fd);

z = step(DEMOD,y);

Plot the input and demodulated signals. The demodulator output signal exactly aligns
with the input signal.

plot(t,x,'r',t,z,'ks')

legend('Input Signal','Demod Signal')

xlabel('Time (s)')

ylabel('Amplitude')

7-64

 FM Modulate and Demodulate a Sinusoidal Signal

7-65

7 OFDM Modulation

Modulate and Demodulate a Streaming Audio Signal

Modulate and demodulate an audio signal with the FM broadcast modulator and
demodulator objects. Plot the frequency responses of the input and demodulated signals.

Create an audio file reader System object™ and read the file guitartune.wav. Set the
SamplesPerFrame property to include the entire file.

AUDIO = dsp.AudioFileReader('guitartune.wav','SamplesPerFrame',44100);

x = step(AUDIO);

Create spectrum analyzer objects to plot the spectra of the modulated and demodulated
signals.

SAaudio = dsp.SpectrumAnalyzer('SampleRate',44100,'ShowLegend',true, ...

 'Title','Audio Signal', ...

 'ChannelNames',{'Input Signal' 'Demodulated Signal'});

SAfm = dsp.SpectrumAnalyzer('SampleRate',152e3, ...

 'Title','FM Broadcast Signal');

Create FM broadcast modulator and demodulator objects. Set the AudioSampleRate
property to match the sample rate of the input signal. Set the SampleRate property of
the demodulator to match the specified sample rate of the modulator.

MOD = comm.FMBroadcastModulator('AudioSampleRate',AUDIO.SampleRate, ...

 'SampleRate',200e3);

DEMOD = comm.FMBroadcastDemodulator('AudioSampleRate',AUDIO.SampleRate, ...

 'SampleRate',200e3);

Use the info method to determine the decimation factor of the filters in the modulator
and demodulator objects. The length of the sequences input to the objects must be an
integer multiple of the object's decimation factor.

info(MOD)

info(DEMOD)

ans =

 struct with fields:

 DecimationFactor: 441

7-66

 Modulate and Demodulate a Streaming Audio Signal

 InterpolationFactor: 1520

ans =

 struct with fields:

 DecimationFactor: 25

 InterpolationFactor: 19

The decimation factor of the modulator is 441 which is clearly a multiple of the audio
frame length of 44100. The decimation factor of the demodulator is 25, which is an
integer multiple of the data sequence length of the modulator output, 200000 samples.

Modulate the audio signal and plot its spectrum.

y = step(MOD,x);

step(SAfm,y)

7-67

7 OFDM Modulation

Demodulate y and plot the resultant spectrum. Compare the input signal spectrum with
the demodulated signal spectrum. The spectra are similar except that demodulated
signal has smaller high frequency components.

z = step(DEMOD,y);

step(SAaudio,[x z])

7-68

 Modulate and Demodulate a Streaming Audio Signal

7-69

8

MSK

• “MSK Signal Recovery” on page 8-2
• “MSK Signal Recovery” on page 8-11

8 MSK

MSK Signal Recovery

This example shows how to model channel impairments such as timing phase offset,
carrier frequency offset, and carrier phase offset for a minimum shift keying (MSK)
signal. The example also shows the use of System objects™ to synchronize such signals
at the receiver.

Introduction

This example models an MSK transmitted signal undergoing channel impairments
such as timing, frequency, and phase offset as well as AWGN noise. An MSK timing
synchronizer recovers the timing offset, while a carrier synchronizer recovers the carrier
frequency and phase offsets.

Initialize system variables by using the MATLAB script
configureMSKSignalRecoveryEx. Define logical control variables to enable timing
phase and carrier frequency and phase recovery.

configureMSKSignalRecoveryEx;

recoverTimingPhase = true;

recoverCarrier = true;

Modeling Channel Impairments

Specify the sample delay, timingOffset , that the channel model applies, and create a
variable fractional delay object to introduce the timing delay to the transmitted signal.

timingOffset = 0.2;

varDelay = dsp.VariableFractionalDelay;

Introduce carrier phase and frequency offsets by creating a phase and frequency offset
object, PFO. Because the MSK modulator upsamples the transmitted symbols, set the
SampleRate property appropriately.

freqOffset = 50;

phaseOffset = 30;

pfo = comm.PhaseFrequencyOffset(...

 'FrequencyOffset', freqOffset, ...

 'PhaseOffset', phaseOffset, ...

 'SampleRate', samplesPerSymbol/Ts);

Create an AWGN channel to add additive white Gaussian noise to the modulated signal.
The noise power is determined by the bit energy to noise power spectral density ratio

8-2

 MSK Signal Recovery

EbNo property. Because the MSK modulator generates symbols with 1 Watt of power, the
signal power property of the AWGN channel is also set to 1.

EbNo = 20 + 10*log10(samplesPerSymbol);

chAWGN = comm.AWGNChannel(...

 'NoiseMethod', 'Signal to noise ratio (Eb/No)', ...

 'EbNo', EbNo,...

 'SignalPower', 1, ...

 'SamplesPerSymbol', samplesPerSymbol);

Timing Phase, Carrier Frequency, and Carrier Phase Synchronization

Construct an MSK timing synchronizer to recover symbol timing phase using a fourth-
order nonlinearity method.

timeSync = comm.MSKTimingSynchronizer(...

 'SamplesPerSymbol', samplesPerSymbol, ...

 'ErrorUpdateGain', 0.02);

Construct a carrier syncrhonizer to recover both carrier frequency and phase. Set the
modulation to QPSK, because the MSK constellation is QPSK with a 0 degree phase
offset.

phaseSync = comm.CarrierSynchronizer(...

 'Modulation', 'QPSK', ...

 'ModulationPhaseOffset', 'Custom', ...

 'CustomPhaseOffset', 0, ...

 'SamplesPerSymbol', 1);

Stream Processing Loop

The system modulates data using MSK modulation. The modulated symbols pass
through the channel model, which applies timing delay, carrier frequency and phase
shift, and additive white Gaussian noise. In this system, the receiver performs timing
phase, and carrier frequency and phase recovery. Finally, the system demodulates
the symbols and calculates the bit error rate using an error rate calculator object. The
plotResultsMSKSignalRecoveryEx script generates scatter plots to show these
effects:

1 Channel impairments
2 Timing synchronization
3 Carrier synchronization

8-3

8 MSK

At the end of the simulation, the example displays the timing phase, frequency, and
phase estimates as a function of simulation time.

for p = 1:numFrames

 %--

 % Generate and modulate data

 %--

 txBits = randi([0 1],samplesPerFrame,1);

 txSym = modem(txBits);

 %--

 % Transmit through channel

 %--

 %

 % Add timing offset

 rxSigTimingOff = varDelay(txSym,timingOffset*samplesPerSymbol);

 %

 % Add carrier frequency and phase offset

 rxSigCFO = pfo(rxSigTimingOff);

 %

 % Pass the signal through an AWGN channel

 rxSig = chAWGN(rxSigCFO);

 %

 % Save the transmitted signal for plotting

 plot_rx = rxSig;

 %

 %--

 % Timing recovery

 %--

 if recoverTimingPhase

 % Recover symbol timing phase using fourth-order nonlinearity method

 [rxSym,timEst] = timeSync(rxSig);

 % Calculate the timing delay estimate for each sample

 timEst = timEst(1)/samplesPerSymbol;

 else

 % Do not apply timing recovery and simply downsample the received signal

 rxSym = downsample(rxSig,samplesPerSymbol);

 timEst = 0;

 end

 % Save the timing synchronized received signal for plotting

 plot_rxTimeSync = rxSym;

 %--

 % Carrier frequency and phase recovery

8-4

 MSK Signal Recovery

 %--

 if recoverCarrier

 % The following script applies carrier frequency and phase recovery

 % using a second order PLL, and remove phase ambiguity

 [rxSym,phEst] = phaseSync(rxSym);

 removePhaseAmbiguityMSKSignalRecoveryEx;

 freqShiftEst = mean(diff(phEst)/(Ts*2*pi));

 phEst = mod(mean(phEst),360); % in degrees

 else

 freqShiftEst = 0;

 phEst = 0;

 end

 % Save the phase synchronized received signal for plotting

 plot_rxPhSync = rxSym;

 %--

 % Demodulate the received symbols

 %--

 rxBits = demod(rxSym);

 %--

 % Calculate the bit error rate

 %--

 errorStats = BERCalc(txBits,rxBits);

 %--

 % Plot results

 %--

 plotResultsMSKSignalRecoveryEx;

end

8-5

8 MSK

8-6

 MSK Signal Recovery

8-7

8 MSK

8-8

 MSK Signal Recovery

Display the bit error rate, BitErrorRate , as well as the total number of symbols,
NumberOfSymbols , processed by the error rate calculator.

ber = errorStats(1)

numSym = errorStats(3)

ber =

 4.0001e-06

numSym =

8-9

8 MSK

 499982

Conclusion and Further Experimentation

The recovery algorithms are demonstrated by using constellation plots taken after
timing, carrier frequency, and carrier phase synchronization.

Click on the Open This Example button to create a writable copy of this example and its
supporting files. Then, to show the effects of the recovery algorithms, you can enable and
disable the control variables recoverTimingPhase and recoverCarrier and rerun
the simulation.

Appendix

This example uses these scripts:

• configureMSKSignalRecoveryEx

• plotResultsMSKSignalRecoveryEx

• removePhaseAmbiguityMSKSignalRecoveryEx

8-10

 MSK Signal Recovery

MSK Signal Recovery

In this section...

“Exploring the Model” on page 8-11
“Results and Displays” on page 8-12
“Experimenting with the Example” on page 8-15

This model shows how channel impairments such as timing phase offset, carrier
frequency offset, and phase offset for a minimum shift keying (MSK) signal are modeled.
The model uses blocks from the Synchronization library to recover the signal. Open the
model, doc_commmsksync.

doc_commmsksync

Exploring the Model

The example models an MSK transmitted signal undergoing channel impairments,
including these components:

1 An MSK signal source that uses the Bernoulli Binary Generator block to
output equiprobable symbols and modulates the symbols using an MSK Modulator
Baseband block

2 A channel model that incorporates independently variable offsets in the timing
phase, frequency, and phase. The channel model also includes the AWGN Channel
block

3 Signal recovery, consisting of:

• Timing recovery using the MSK-Type Signal Timing Recovery block
• Carrier frequency and phase recovery using the Carrier Synchronizer block

4 An MSK Demodulator Baseband block
5 Blocks that compute and display the system's bit error rate (BER)

When you load the model, it also initializes some parameters that several blocks share.

8-11

8 MSK

Results and Displays

When you run the simulation, the displays show the estimated values for the
impairments as well as the BER metrics. Because the Carrier Synchronizer block
performs both frequency and phase correction, the display of estimated phase offset
may fluctuate rapidly. The display labeled BER Metrics shows a three-element vector
containing the calculated bit error rate (BER), the number of errors observed, and the
number of bits processed.

You can view the MSK signal via the Constellation Diagram blocks at the different
stages. This provides a compelling visual rendition of the recovery algorithms in action,
especially as you turn the algorithms on and off using the two control switches.

Scatter plot of received signal:

8-12

 MSK Signal Recovery

Scatter plot of signal after timing recovery:

8-13

8 MSK

Scatter plot of signal after carrier frequency and phase recovery:

8-14

 MSK Signal Recovery

You can also reset the BER computation after the signal has reached a steady state.

Experimenting with the Example

The example is designed so that you can vary the impairments independently while the
simulation is running. You can also use the toggle switches to turn the recovery schemes
on and off while the simulation is running, and then see the effects on the scatter plots.

Further items to investigate include:

• Set the frequency offset to 0 and observe the displayed signal constellations and
estimated phase offset.

8-15

8 MSK

• Observe that the Carrier Synchronizer block is set for a QPSK constellation with
a phase offset of 0°.

• To see how the timing offset is tracked, replace the Constant block with a Sine
Wave block. Vary the offset between 0 and 1 over the duration of the simulation.

• Vary the error update gain of the MSK-Type Signal Timing Recovery block
to assess its ability to track constant and time-varying offsets. To access the block,
open the Timing Recovery subsystem and then open the Timing Recovery Algorithm
subsystem.

8-16

9

Reed-Solomon Coding

• “Reed-Solomon Coding Part I – Erasures” on page 9-2
• “Reed-Solomon Coding Part II – Punctures” on page 9-8
• “Reed-Solomon Coding Part III – Shortening” on page 9-14
• “Reed-Solomon Coding with Erasures, Punctures, and Shortening” on page 9-20
• “Estimate LDPC Performance in AWGN” on page 9-29
• “Character Representation of Polynomials” on page 9-31
• “Estimate BER of 8-PSK in AWGN with Reed-Solomon Coding” on page 9-32
• “Transmit and Receive Shortened Reed-Solomon Codes” on page 9-35

9 Reed-Solomon Coding

Reed-Solomon Coding Part I – Erasures

This example shows how to configure the RSEncoder and RSDecoder System
objects to perform Reed-Solomon (RS) block coding with erasures when simulating a
communications system. RS decoders can correct both errors and erasures. A receiver
that identifies the most unreliable symbols in a given codeword can generate erasures.
When a receiver erases a symbol, it replaces that symbol with a zero. The receiver then
passes a flag to the decoder, indicating that the symbol is an erasure, not a valid code
symbol. In addition, an encoder can generate punctures for which specific parity symbols
are always removed from its output. The decoder, which knows the puncture pattern,
inserts zeros in the puncture positions and treats those symbols as erasures. The decoder
treats encoder-generated punctures and receiver-generated erasures the exact same way
when it decodes a symbol. Puncturing also has the added benefit of making the code rate
more flexible, at the expense of some error correction capability. Shortened codes achieve
the same code rate flexibility without degrading the error correction performance, given
the same demodulator input energy per bit to noise power spectral density ratio (Eb/N0).
Note that puncturing is the removal of parity symbols from a codeword, and shortening
is the removal of message symbols from a codeword. In addition to this example, the
examples “Reed-Solomon Coding Part II – Punctures” and “Reed-Solomon Coding Part III
– Shortening” show RS block coding with punctures and shortened codes, respectively.

Introduction

This example shows the simulation of a communication system consisting of a random
source, an RS encoder, a rectangular 64-QAM modulator, an AWGN channel, a
rectangular 64-QAM demodulator, and an RS decoder. It includes analysis of RS coding
with erasures by comparing the channel bit error rate (BER) performance versus the
coded BER performance. This example obtains Channel BER by comparing inputs for the
rectangular QAM modulator to outputs from the rectangular QAM demodulator. This
example obtains Coded BER by comparing inputs for the RS encoder to outputs from the
RS decoder. THIS IS FLAWED!

Initialization

The script file RSCodingConfigExample configures the rectangular 64-QAM modulator
and demodulator, the AWGN channel, and the error rate measurement System objects
used to simulate the communications system. The script also sets an uncoded Eb/N0
ratio to EbNoUncoded = 15 dB, and sets the simulation stop criteria by defining the
target number of errors and the maximum number of bit transmissions to 500 and 5×106

respectively.

9-2

 Reed-Solomon Coding Part I – Erasures

RSCodingConfigExample

Configuring the RS Encoder/Decoder

This example shows a (63,53) RS code operating with a 64-QAM modulation scheme. This
code can correct (63-53)/2 = 5 errors, or it can alternatively correct (63-53) = 10 erasures.
For each codeword at the output of the 64-QAM demodulator, the receiver determines the
six least reliable symbols using the RSCodingGetErasuresExample function. The indices
that point to the location of these unreliable symbols are passed as an input to the RS
decoder. The RS decoder treats these symbols as erasures resulting in an error correction
capability of (10-6)/2 = 2 errors per codeword.

Create a (63,53) RSEncoder System object and set the BitInput property to false to
specify that the encoder inputs and outputs are integer symbols.

N = 63; % Codeword length

K = 53; % Message length

rsEncoder = comm.RSEncoder(N,K, 'BitInput', false);

numErasures = 6;

Create an RSDecoder System object using the same settings as in the encoder. Request
an additional input for specifying erasures as an input to the object. This is done by
setting the ErasuresInputPort property to true.

rsDecoder = comm.RSDecoder(N,K, 'BitInput', false, 'ErasuresInputPort', true);

Set the NumCorrectedErrorsOutputPort property to true so that the decoder outputs
the number of corrected errors. A non negative value in the error output denotes the
number of corrected errors in the input codeword. A value of −1 in the error output
indicates a decoding error. A decoding error occurs when the input codeword has more
errors than the error correction capability of the RS code.

rsDecoder.NumCorrectedErrorsOutputPort = true;

Stream Processing Loop

Simulate the communications system for an uncoded Eb/N0 ratio of 15 dB. The uncoded
Eb/N0 is the ratio that would be measured at the input of the channel if there was no
coding in the system.

The signal going into the AWGN channel is the encoded signal, so you must convert the
uncoded Eb/N0 values so that they correspond to the energy ratio at the encoder output.

9-3

9 Reed-Solomon Coding

This ratio is the coded Eb/N0 ratio. If you input K symbols to the encoder and obtain N
output symbols, then the energy relation is given by the K/N rate. Set the EbNo property
of the AWGN channel object to the computed coded Eb/N0 value.

EbNoCoded = EbNoUncoded + 10*log10(K/N);

channel.EbNo = EbNoCoded;

Loop until the simulation reaches the target number of errors or the maximum number
of transmissions.

chanErrorStats = zeros(3,1);

codedErrorStats = zeros(3,1);

correctedErrors = 0;

while (codedErrorStats(2) < targetErrors) && ...

 (codedErrorStats(3) < maxNumTransmissions)

 % Data symbols - transmit 1 message word at a time. Each message word has

 % K symbols in the [0 N] range.

 data = randi([0 N],K,1);

 % Encode the message word. The encoded word encData is N symbols long.

 encData = rsEncoder(data);

 % Modulate encoded data.

 modData = qamModulator(encData);

 % Add noise.

 chanOutput = channel(modData);

 % Demodulate channel output.

 demodData = qamDemodulator(chanOutput);

 % Find the 6 least reliable symbols and generate an erasures vector using

 % the RSCodingGetErasuresExample function. The length of the erasures vector

 % must be equal to the number of symbols in the demodulated codeword. A

 % one in the ith element of the vector erases the ith symbol in the

 % codeword. Zeros in the vector indicate no erasures.

 erasuresVec = RSCodingGetErasuresExample(chanOutput, numErasures);

 % Decode data.

 [estData, errs] = rsDecoder(demodData,erasuresVec);

 % If a decoding error did not occur, accumulate the number of corrected

 % errors using the cumulative sum object.

9-4

 Reed-Solomon Coding Part I – Erasures

 if errs >= 0

 correctedErrors = cumulativeSum(errs);

 end

 % Convert integers to bits and compute the channel BER.

 chanErrorStats(:,1) = ...

 chanBERCalc(intToBit1(encData),intToBit1(demodData));

 % Convert integers to bits and compute the coded BER.

 codedErrorStats(:,1) = ...

 codedBERCalc(intToBit2(data),intToBit2(estData));

end

The error rate measurement objects, chanBERCalc and codedBERCalc, output 3-
by-1 vectors containing BER measurement updates, the number of errors, and the total
number of bit transmissions. Display the coded BER and the total number of errors
corrected by the RS decoder.

codedBitErrorRate = codedErrorStats(1)

totalCorrectedErrors = correctedErrors

codedBitErrorRate =

 0

totalCorrectedErrors =

 882

You can add a for loop around the processing loop above to run simulations for a set
of Eb/N0 values. Simulations were run offline for uncoded Eb/N0 values in 4:15 dB,
target number of errors equal to 5000, and maximum number of transmissions equal to
50×106. The results from the simulation are shown. The channel BER is worse than the
theoretical 64-QAM BER because Eb/N0 is reduced by the code rate.

9-5

9 Reed-Solomon Coding

Summary

This example utilized several System objects to simulate a rectangular 64-QAM
communications system over an AWGN channel with RS block coding. It showed how
to configure the RS decoder to decode symbols with erasures. System performance was
measured using channel and coded BER curves obtained using error rate measurement
System objects.

The examples “Reed-Solomon Coding Part II − Punctures” and “Reed-Solomon Coding
Part III − Shortening” show how to perform RS block coding with punctured and
shortened codes, respectively.

9-6

 Reed-Solomon Coding Part I – Erasures

Appendix

This example uses the following script and helper function:

• RSCodingConfigExample
• RSCodingGetErasuresExample

Selected Bibliography

[1] G. C. Clark, Jr., J. B. Cain, Error-Correction Coding for Digital Communications,
Plenum Press, New York, 1981.

9-7

9 Reed-Solomon Coding

Reed-Solomon Coding Part II – Punctures
This example shows how to set up the Reed-Solomon (RS) encoder/decoder to use
punctured codes. An encoder can generate punctures for which specific parity symbols
are always removed from its output. The decoder, which knows the puncture pattern,
inserts zeros in the puncture positions and treats those symbols as erasures. The decoder
treats encoder-generated punctures and receiver-generated erasures in exactly the same
way when it decodes. Puncturing has the added benefit of making the code rate more
flexible, at the expense of some error correction capability.

In addition to this example, the example “Reed-Solomon Coding Part I – Erasures”
shows a rectangular 64-QAM communications system with a (63,53) RS block code with
erasures, and the example “Reed-Solomon Coding Part III – Shortening” shows RS block
coding with shortened codes.

Introduction

This example shows the simulation of a communication system consisting of a random
source, an RS encoder, a rectangular 64-QAM modulator, an AWGN channel, a
rectangular 64-QAM demodulator, and an RS decoder. It includes analysis of RS
coding with erasures and puncturing by comparing the channel bit error rate (BER)
performance versus the coded BER performance. This example obtains Channel BER by
comparing inputs for the rectangular QAM modulator to outputs from the rectangular
QAM demodulator. This example obtains Coded BER by comparing inputs for the RS
encoder to outputs from the RS decoder.

Initialization

The script file RSCodingConfigExample configures the rectangular 64-QAM modulator
and demodulator, the AWGN channel, and the error rate measurement System objects
used to simulate the communications system. The script also sets an uncoded Eb/N0
ratio to EbNoUncoded = 15 dB, and sets the simulation stop criteria by defining the
target number of errors and the maximum number of bit transmissions to 500 and 5×106,
respectively.

RSCodingConfigExample

Configuring the RS Encoder/Decoder

Consider the same (63,53) RS code operating in concert with a 64-QAM modulation
scheme that was used in the example “Reed-Solomon Coding Part I − Erasures” to
showcase how to decode erasures. This example shows how to set up the RS encoder/

9-8

 Reed-Solomon Coding Part II – Punctures

decoder to use a punctured code. In addition to decoding receiver-generated erasures, the
RS decoder can correct encoder-generated punctures. The decoding algorithm is identical
for the two cases. For each codeword, the sum of the punctures and erasures cannot
exceed twice the error-correcting capability of the code.

N = 63; % Codeword length

K = 53; % Message length

numErasures = 6;

rsEncoder = comm.RSEncoder(N,K, 'BitInput', false);

rsDecoder = comm.RSDecoder(N,K, 'BitInput', false, 'ErasuresInputPort', true);

To enable code puncturing you set the PuncturePatternSource property to 'Property'
and set the PuncturePattern property to the desired puncture pattern vector. The
same puncture vector must be specified in both the encoder and decoder. This example
punctures two symbols from each codeword. Values of one in the puncture pattern vector
indicate nonpunctured symbols, while values of zero indicate punctured symbols.

numPuncs = 2;

rsEncoder.PuncturePatternSource = 'Property';

rsEncoder.PuncturePattern = [ones(N-K-numPuncs,1); zeros(numPuncs,1)];

rsDecoder.PuncturePatternSource = 'Property';

rsDecoder.PuncturePattern = rsEncoder.PuncturePattern;

Stream Processing Loop

Simulate the communications system for an uncoded Eb/N0 ratio of 15 dB. The uncoded
Eb/N0 is the ratio that would be measured at the input of the channel if there was no
coding in the system.

The length of the codewords generated by the RS encoder is reduced by the number of
punctures specified in the puncture pattern vector. For this reason, the value of the coded
Eb/N0 ratio needs to be adjusted to account for these punctures. In this example, the
uncoded Eb/N0 ratio relates to the coded Eb/N0 as shown below. Set the EbNo property of
the AWGN channel object to the computed coded Eb/N0 value.

EbNoCoded = EbNoUncoded + 10*log10(K/(N - numPuncs));

channel.EbNo = EbNoCoded;

Loop until the simulation reaches the target number of errors or the maximum number
of transmissions.

chanErrorStats = zeros(3,1);

9-9

9 Reed-Solomon Coding

codedErrorStats = zeros(3,1);

correctedErrors = 0;

while (codedErrorStats(2) < targetErrors) && ...

 (codedErrorStats(3) < maxNumTransmissions)

 % Data symbols - transmit 1 message word at a time. Each message word

 % has K symbols in the [0 N] range.

 data = randi([0 N],K,1);

 % Encode the message word. The encoded word encData is N-numPuncs symbols

 % long.

 encData = rsEncoder(data);

 % Modulate encoded data.

 modData = qamModulator(encData);

 % Add noise.

 chanOutput = channel(modData);

 % Demodulate channel output.

 demodData = qamDemodulator(chanOutput);

 % Get erasures vector.

 erasuresVec = RSCodingGetErasuresExample(chanOutput,numErasures);

 % Decode data.

 [estData,errs] = rsDecoder(demodData,erasuresVec);

 % If a decoding error did not occur, accumulate the number of corrected

 % errors using the cumulative sum objet.

 if errs >= 0

 correctedErrors = cumulativeSum(errs);

 end

 % Convert integers to bits and compute the channel BER.

 chanErrorStats(:,1) = ...

 chanBERCalc(intToBit1(encData),intToBit1(demodData));

 % Convert integers to bits and compute the coded BER.

 codedErrorStats(:,1) = ...

 codedBERCalc(intToBit2(data),intToBit2(estData));

end

9-10

 Reed-Solomon Coding Part II – Punctures

The error rate measurement objects, chanBERCalc and codedBERCalc, output 3-by-1
vectors containing updates of the measured BER value, the number of errors, and the
total number of bit transmissions. Display the coded BER and the total number of errors
corrected by the RS decoder.

codedBitErrorRate = codedErrorStats(1)

totalCorrectedErrors = correctedErrors

codedBitErrorRate =

 4.3198e-05

totalCorrectedErrors =

 578

You can add a for loop around the processing loop above to run simulations for a set of
Eb/N0 values. Simulations were run offline for uncoded Eb/N0 values in 4:15 dB, target
number of errors equal to 5000, and maximum number of transmissions equal to 50×106.
The results from the simulation are shown in the following figure. For comparison, the
figure also shows the results obtained in the example “Reed-Solomon Coding Part I –
Erasures”, which correspond to a system with erasures but no puncturing.

9-11

9 Reed-Solomon Coding

From the curves, observe that the channel BER is slightly better in the punctured case.
The reason for this is that the coded Eb/N0 is slightly higher. On the other hand, the
coded BER is worse in the punctured case, because the two punctures reduce the error
correcting capability of the code by one, leaving it able to correct only (10-6-2)/2 = 1 error
per codeword.

Summary

The example utilized several System objects to simulate a rectangular 64-QAM
communications system over an AWGN channel with RS block coding. It showed how
to configure the RS encoder/decoder System objects to obtain punctured codes. System

9-12

 Reed-Solomon Coding Part II – Punctures

performance was measured using channel and coded BER curves obtained using the
error rate measurement System objects.

The example “Reed-Solomon Coding Part III – Shortening” shows how to perform RS
block coding with shortened codes.

Appendix

This example uses the following script and helper function:

• RSCodingConfigExample
• RSCodingGetErasuresExample

Selected Bibliography

[1] G. C. Clark, Jr., J. B. Cain, Error-Correction Coding for Digital Communications,
Plenum Press, New York, 1981.

9-13

9 Reed-Solomon Coding

Reed-Solomon Coding Part III – Shortening

This example shows how to set up the Reed-Solomon (RS) encoder/decoder to shorten the
(63,53) code to a (28,18) code.

In addition to this example, the examples “Reed-Solomon Coding Part I – Erasures” and
“Reed-Solomon Coding Part II – Punctures” show a rectangular 64-QAM communications
system with a (63,53) RS block code with erasures and punctures respectively. As was
mentioned in the two examples, puncturing has the benefit of making the code rate more
flexible, at the expense of some error correction capability. Shortened codes achieve the
same code rate flexibility without degrading the error correction performance, given the
same demodulator input Eb/N0. Note that puncturing is the removal of parity symbols
from a codeword, and shortening is the removal of message symbols from a codeword.

Introduction

This example shows the simulation of a communication system consisting of a random
source, an RS encoder, a rectangular 64-QAM modulator, an AWGN channel, a
rectangular 64-QAM demodulator, and an RS decoder. It analyzes the effects of RS
coding with erasures, puncturing, and shortening, by comparing the channel bit error
rate (BER) performance versus the coded BER performance. This example obtains
Channel BER by comparing inputs for the rectangular QAM modulator to outputs from
the rectangular QAM demodulator. This example obtains Coded BER by comparing
inputs for the RS encoder to outputs from the RS decoder.

Initialization

The script file RSCodingConfigExample configures the rectangular 64-QAM modulator
and demodulator, the AWGN channel, and the error rate measurement System objects
used to simulate the communications system. The script also sets an uncoded Eb/N0
ratio to EbNoUncoded = 15 dB, and sets the simulation stop criteria by defining the
target number of errors and the maximum number of bit transmissions to 500 and 5×106,
respectively.

RSCodingConfigExample

Configuring the RS Encoder/Decoder

Consider the same (63,53) RS code operating in concert with a 64-QAM modulation
scheme that was used in the examples Reed-Solomon Coding Part I - Erasures and Reed-

9-14

 Reed-Solomon Coding Part III – Shortening

Solomon Coding Part II - Punctures to showcase how to decode erasures and how to
puncture the code. This example shows how to shorten the (63,53) code to a (28,18) code.

Shortening a block code removes symbols from its message portion, while puncturing
removes symbols from its parity portion. You can incorporate both techniques with the
RS encoder and decoder System objects.

For example, to shorten a (63,53) code to a (53,43) code, you can simply enter 53 and
43 for the CodewordLength and MessageLength properties, respectively (since
2 53 1 1 632log ()+ÈÍ ˘̇ - =). However, to shorten it by 35 symbols to a (28,18) code, you

must explicitly specify that the symbols belong to the Galois field GF(26). Otherwise,
the RS blocks will assume that the code is shortened from a (31,21) code (since
2 28 1 1 312log ()+ÈÍ ˘̇ - =).

Set the RS encoder/decoder System objects so that they perform block coding with a
(28,18) code shortened from a (63,53) code.

Create a (63,53) RSEncoder System object, and an RSDecoder object with an erasures
input port, and two punctures.

N = 63; % Codeword length

K = 53; % Message length

S = 18;

numErasures = 6;

numPuncs = 2;

rsEncoder = comm.RSEncoder(N, K, 'BitInput', false);

rsDecoder = comm.RSDecoder(N, K, 'BitInput', false, 'ErasuresInputPort', true);

rsEncoder.PuncturePatternSource = 'Property';

rsEncoder.PuncturePattern = [ones(N-K-numPuncs,1); zeros(numPuncs,1)];

rsDecoder.PuncturePatternSource = 'Property';

rsDecoder.PuncturePattern = rsEncoder.PuncturePattern;

% Set the shortened message length values

rsEncoder.ShortMessageLength = S;

rsDecoder.ShortMessageLength = S;

Specify the field of GF(26) in the RS encoder/decoder System objects, by setting the
PrimitivePolynomialSource property to 'Property' and the PrimitivePolynomial
property to a 6th degree primitive polynomial.

rsEncoder.PrimitivePolynomialSource = 'Property';

rsEncoder.PrimitivePolynomial = de2bi(primpoly(6, 'nodisplay'), 'left-msb');

9-15

9 Reed-Solomon Coding

rsDecoder.PrimitivePolynomialSource = 'Property';

rsDecoder.PrimitivePolynomial = de2bi(primpoly(6, 'nodisplay'), 'left-msb');

Stream Processing Loop

Simulate the communications system for an uncoded Eb/N0 ratio of 15 dB. The uncoded
Eb/N0 is the ratio that would be measured at the input of the channel if there was no
coding in the system.

Shortening alters the code rate much like puncturing does. You must adjust the value
of the coded Eb/N0 ratio to account for punctures and shortening. In this example, the
uncoded Eb/N0 ratio relates to the coded Eb/N0, as shown in the following syntax. Set the
property of the AWGN channel object to the computed coded Eb/N0 value.

EbNoCoded = EbNoUncoded + ...

 10*log10(S/(N - numPuncs - K + S));

channel.EbNo = EbNoCoded;

Loop until the simulation reaches the target number of errors or the maximum number
of transmissions.

chanErrorStats = zeros(3,1);

codedErrorStats = zeros(3,1);

while (codedErrorStats(2) < targetErrors) && ...

 (codedErrorStats(3) < maxNumTransmissions)

 % Data symbols - transmit 1 message word at a time, each message word has

 % S symbols in the [0 2^P-1] range. P is the degree of the

 % primitive polynomial specified in the RS encoder/decoder, which in this

 % example equals 6.

 data = randi([0 2^6-1],S,1);

 % Encode the shortened message word. The encoded word encData is

 % N-numPuncs-K+S symbols long.

 encData = rsEncoder(data);

 % Modulate encoded data.

 modData = qamModulator(encData);

 % Add noise.

 chanOutput = channel(modData);

9-16

 Reed-Solomon Coding Part III – Shortening

 % Demodulate channel output.

 demodData = qamDemodulator(chanOutput);

 % Get erasures vector.

 erasuresVec = RSCodingGetErasuresExample(chanOutput,numErasures);

 % Decode data.

 [estData,errs] = rsDecoder(demodData,erasuresVec);

 % If a decoding error did not occur, accumulate the number of corrected

 % errors using the cumulative sum object.

 if errs >= 0

 correctedErrors = cumulativeSum(errs);

 end

 % Convert integers to bits and compute the channel BER.

 chanErrorStats(:,1) = ...

 chanBERCalc(intToBit1(encData),intToBit1(demodData));

 % Convert integers to bits and compute the coded BER.

 codedErrorStats(:,1) = ...

 codedBERCalc(intToBit2(data),intToBit2(estData));

end

The error rate measurement objects, chanBERCalc and codedBERCalc, output 3-by-1
vectors containing updates of the measured BER value, the number of errors, and the
total number of bit transmissions. Display the coded BER and the total number of errors
corrected by the RS decoder.

codedBitErrorRate = codedErrorStats(1)

totalCorrectedErrors = correctedErrors

codedBitErrorRate =

 9.6599e-05

totalCorrectedErrors =

 1436

You can add a for loop around the processing loop above to run simulations for a set of
Eb/N0 values. Simulations were run offline for uncoded Eb/N0 values in 4:15 dB, target
number of errors equal to 5000, and maximum number of transmissions equal to 50×106.

9-17

9 Reed-Solomon Coding

The results from the simulation are shown in the following figure. For comparison, the
figure also shows the results obtained in the examples “Reed-Solomon Coding Part I –
Erasures” and “Reed-Solomon Coding Part II – Punctures”. The results of “Reed-Solomon
Coding Part I – Erasures” correspond to a system with erasures but no puncturing.
The results of “Reed-Solomon Coding Part II – Punctures” correspond to a system with
erasures and punctures.

From the curves, observe that the channel BER is worse with shortening because the
coded Eb/N0 is worse. This degraded coded Eb/N0 occurs because the code rate of the
shortened code is much lower than that of the nonshortened code. As a result, the coded
BER is also worse with shortening than without, especially at lower Eb/N0 values.

9-18

 Reed-Solomon Coding Part III – Shortening

Summary

This example utilized several System objects to simulate a rectangular 64-QAM
communications system over an AWGN channel with a shortened RS block code. It
showed how to configure the RS encoder/decoder to shorten a (63,53) code to a (28,18)
code. System performance was measured using channel and coded BER curves obtained
with the help of error rate measurement System objects.

The examples “Reed-Solomon Coding Part I – Erasures”, “Reed-Solomon Coding Part II
– Punctures”, and “Reed-Solomon Coding Part III – Shortening” show how to configure
RS encoders and decoders to perform block coding with erasures, puncturing, and
shortening.

Appendix

This example uses the following script and helper function:

• RSCodingConfigExample
• RSCodingGetErasuresExample

Selected Bibliography

[1] G. C. Clark, Jr., J. B. Cain, Error-Correction Coding for Digital Communications,
Plenum Press, New York, 1981.

9-19

9 Reed-Solomon Coding

Reed-Solomon Coding with Erasures, Punctures, and Shortening

In this section...

“Decoding with Receiver Generated Erasures” on page 9-20
“Simulation and Visualization with Erasures Only” on page 9-21
“BER Performance with Erasures Only” on page 9-24
“Simulation with Erasures and Punctures” on page 9-25
“BER Performance with Erasures and Punctures” on page 9-26
“Specifying a Shortened Code” on page 9-26
“Simulation with Erasures, Punctures, and Shortening” on page 9-27
“BER Performance with Erasures, Punctures, and Shortening” on page 9-27
“Further Exploration” on page 9-28

This model shows how to configure Reed-Solomon (RS) codes to perform block coding
with erasures, punctures, and shortening.

RS decoders can correct both errors and erasures. The erasures can be generated by a
receiver that identifies the most unreliable symbols in a given codeword. When a receiver
erases a symbol, it replaces the symbol with a zero and passes a flag to the decoder
indicating that the symbol is an erasure, not a valid code symbol.

In addition, an encoder can generate punctures for which specific parity symbols are
always removed from its output. The decoder, which knows the puncture pattern, inserts
zeros in the puncture positions and treats those symbols as erasures. The decoder treats
encoder-generated punctures and receiver-generated erasures in exactly the same way
when it decodes.

Puncturing has the added benefit of making the code rate a bit more flexible, at the
expense of some error correction capability. Shortened codes achieve the same code
rate flexibility without degrading the error correction performance, given the same
demodulator input Eb/N0. Note that puncturing is the removal of parity symbols from a
codeword, and shortening is the removal of message symbols from a codeword.

Decoding with Receiver Generated Erasures

This example shows a (63,53) RS code operating in concert with a 64-QAM modulation
scheme. Since the code can correct (63-53)/2 = 5 errors, it can alternatively correct

9-20

 Reed-Solomon Coding with Erasures, Punctures, and Shortening

(63-53) = 10 erasures. For each demodulated codeword, the receiver determines the
six least reliable symbols by finding the symbols within a decision region that are
nearest to a decision boundary. It then erases those symbols. We first open the model
RSCodingErasuresExample.

Simulation and Visualization with Erasures Only

We then define system simulation parameters:

RS_TsUncoded = 1; % Sample time (s)

RS_n = 63; % Codeword length

RS_k = 53; % Message length

RS_MQAM = 64; % QAM order

RS_numBitsPerSymbol = ... % 6 bits per symbol

 log2(RS_MQAM);

RS_sigPower = 42; % Assume points at +/-1, +/-3, +/-5, +/-7

RS_numErasures = 6; % Number of erasures

RS_EbNoUncoded = 15; % In dB

The system is simulated at an uncoded Eb/N0 of 15 dB. However, the coded Eb/N0 is
reduced because of the redundant symbols added by the RS Encoder. Also, the period of

9-21

9 Reed-Solomon Coding

each frame in the model remains constant at 53 seconds, corresponding to a sample time
of 1 second at the output of the Random Integer Generator. Moreover, the symbol time at
the output of the RS Encoder is reduced by a factor of the code rate, because 63 symbols
are output over the frame time of 53 seconds. The AWGN Channel block accounts for this
by using the following parameters:

RS_EbNoCoded = RS_EbNoUncoded + 10*log10(RS_k/RS_n);

RS_TsymCoded = RS_TsUncoded * (RS_k/RS_n);

The receiver determines which symbols to erase by finding the 64-QAM symbols, per
codeword, that are closest to a decision boundary. It deletes the six least reliable code
symbols, which still allows the RS Decoder to correct (10-6)/2 = 2 errors per codeword.

We simulate the system, showing the received symbols and those symbols that were
erased:

9-22

 Reed-Solomon Coding with Erasures, Punctures, and Shortening

9-23

9 Reed-Solomon Coding

BER Performance with Erasures Only

Now let's examine the BER performance at the output of the decoder. We set the stop
time of the simulation to inf, then simulate until 100 bit errors are collected out of the RS
Decoder. The 64-QAM BER is shown below, followed by the RS BER. This convention is
followed for the remainder of this example.

BER_eras =

 1.7049e-03 2.5906e-06

9-24

 Reed-Solomon Coding with Erasures, Punctures, and Shortening

Simulation with Erasures and Punctures

In addition to decoding receiver-generated erasures, the RS Decoder can correct encoder-
generated punctures. The decoding algorithm is identical for the two cases, but the per-
codeword sum of the punctures and erasures cannot exceed twice the error-correcting
capability of the code. Consider the following model that performs decoding for both
erasures and punctures.

The same puncture vector is specified in both the encoder and decoder blocks. This
example punctures two symbols from each codeword. Vector values of "1" indicate
nonpunctured symbols, while values of "0" indicate punctured symbols. In the erasures
vector, however, values of "1" indicate erased symbols, while values of "0" indicate
nonerased symbols.

Several of the parameters for the AWGN Channel block are now slightly different,
because the length of the codeword is now different from the previous example. The block
accounts for the size difference with the following code:

RS_EbNoCoded = RS_EbNoUncoded + 10*log10(RS_k / (RS_n - RS_numPuncs));

RS_TsymCoded = RS_TsUncoded * (RS_k / (RS_n - RS_numPuncs));

We simulate the model, RSCodingErasuresPunctExample.mdl, collecting 1000
errors out of the RS Decoder block. Due to puncturing, the signal dimensions out of the
encoder are 61-by-1, rather than 63-by-1 in the model with no puncturing. The Create
Erasures Vector subsystem must also account for the size differences as it creates a 61-
by-1 erasures vector. Open the model RSCodingErasuresPunctExample.

9-25

9 Reed-Solomon Coding

BER Performance with Erasures and Punctures

Let's compare the BERs for erasures decoding with and without puncturing.

The BER out of the 64-QAM Demodulator is slightly better in the punctured case,
because the Eb/N0 into the demodulator is slightly higher. However, the BER out of the
RS Decoder is much worse in the punctured case, because the two punctures reduce the
error correcting capability of the code by one, leaving it able to correct only (10-6-2)/2 = 1
error per codeword.

BER_eras =

 1.7049e-03 2.5906e-06

BER_eras_punc =

 1.4767e-03 6.1103e-05

Specifying a Shortened Code

Shortening a block code removes symbols from its message portion, where puncturing
removes symbols from its parity portion. You can incorporate both techniques with the
RS encoder and decoder blocks.

For example, to shorten a (63,53) code to a (53,43) code, you can simply enter 63, 53 and
43 for n, k, and s respectively, in the encoder and decoder block masks.

9-26

 Reed-Solomon Coding with Erasures, Punctures, and Shortening

Open the model RSCodingErasuresPunctShortExample.

Simulation with Erasures, Punctures, and Shortening

Because shortening alters the code rate much like puncturing does, the AWGN
parameters must be changed again. The AWGN Channel block accounts for this with the
following code:

RS_EbNoCoded = RS_EbNoUncoded + ...

 10*log10(RS_s / (RS_n - RS_k + RS_s - RS_numPuncs));

RS_TsymCoded = RS_TsUncoded * ...

 RS_s / (RS_n - RS_k + RS_s - RS_numPuncs);

We simulate the model, once again collecting 1000 errors out of the RS Decoder block.
Note that the signal dimensions out of the RS Encoder are 26x1, due to 35 symbols
of shortening and 2 symbols of puncturing. Once again, the Create Erasures Vector
subsystem must also account for the size difference caused by the shortened code.

BER Performance with Erasures, Punctures, and Shortening

Let's compare the BER performance for decoding with erasures only, with erasures and
punctures, and with erasures, punctures, and shortening.

9-27

9 Reed-Solomon Coding

The BER out of the 64-QAM Demodulator is worse with shortening than it is without
shortening. This is because the code rate of the shortened code is much lower than the
code rate of the non-shortened code and therefore the coded Eb/N0 into the demodulator
is worse with shortening. A shortened code has the same error correcting capability as
non-shortened code for the same Eb/N0, but the reduction in Eb/N0 manifests in the form
of a higher BER out of the RS Decoder with shortening than without.

BER_eras =

 1.7049e-03 2.5906e-06

BER_eras_punc =

 1.4767e-03 6.1103e-05

BER_eras_punc_short =

 3.5975e-03 9.1940e-05

Further Exploration

You can experiment with these systems by running them over a loop of Eb/N0 values and
generating a BER curve for them. You can then compare their performance against a
theoretical 64-QAM/RS system without erasures, punctures, or shortening. Use BERTool
to generate the theoretical BER curves.

9-28

 Estimate LDPC Performance in AWGN

Estimate LDPC Performance in AWGN

Transmit an LDPC-encoded, QPSK-modulated bit stream through an AWGN channel.
Then demodulate, decode, and count errors.

Create an LDPC encoder and decoder pair.

ldpcEnc = comm.LDPCEncoder;

ldpcDec = comm.LDPCDecoder;

Create a QPSK modulator, a QPSK demodulator, and an Error Rate detector.

qpskMod = comm.QPSKModulator('BitInput',true);

qpskDemod = comm.QPSKDemodulator('BitOutput',true,...

 'DecisionMethod','Approximate log-likelihood ratio', ...

 'VarianceSource','Input port');

errorCnt = comm.ErrorRate;

Create a vector of SNR values to evaluate. Initialize the bit error rate vector.

snrVec = [0 0.2 0.4 0.6 0.65 0.7 0.75 0.8];

ber = zeros(length(snrVec),1);

Encode, modulate, and transmit 32400-bit frames of binary data through an AWGN
channel. Then, demodulate, decode, and estimate the bit error rate.

for k = 1:length(snrVec)

 noiseVar = 1/10^(snrVec(k)/10);

 errorStats = zeros(1,3);

 while errorStats(2) <= 200 && errorStats(3) < 5e6

 data = logical(randi([0 1],32400,1)); % Generate binary data

 encData = ldpcEnc(data); % Apply LDPC encoding

 modSig = qpskMod(encData); % Modulate

 rxSig = awgn(modSig,snrVec(k)); % Pass through AWGN channel

 demodSig = qpskDemod(rxSig,noiseVar); % Demodulate

 rxData = ldpcDec(demodSig); % Decode LDPC

 errorStats = errorCnt(data,rxData); % Compute error stats

 end

 % Save the BER for the current Eb/No and reset the error rate counter

 ber(k) = errorStats(1);

 reset(errorCnt)

end

Plot the bit error rate.

9-29

9 Reed-Solomon Coding

semilogy(snrVec,ber,'-o')

grid

xlabel('SNR (dB)')

ylabel('Bit Error Rate')

9-30

 Character Representation of Polynomials

Character Representation of Polynomials

You can specify polynomials as a character vector using a variety of syntaxes that
correspond to those found in literature. The Communications System Toolbox functions
that support character vector polynomials internally convert them into the appropriate
form. The form varies depending on the function. For example, the comm.BCHEncoder
function expresses polynomials as a binary row vector whose powers are in descending
order.

When specifying character vectors to represent polynomials:

• The order of the polynomial, ascending or descending, does not matter.
• Spaces are ignored.
• The caret symbol, ^, which indicates the presence of an exponent, is optional. If

omitted, the function assumes that the integer following the variable name is an
exponent.

• Braces, {}, denote an exponent. For example, you can represent x2 as x{2}.
• Text appearing before the polynomial expression (with or without an equals sign) is

ignored.
• Punctuation following square brackets is ignored.
• Exponents must be uniformly positive or uniformly negative. Mixed exponents are not

allowed. For example, 'x^2 + x + 1' and '1 + z^-6 + z^-8' are valid while '1
+ z^6 + z^-8' is not.

To illustrate these characteristics, you can express the polynomial 1 + 2x + x3 + 4x5 + x14

using any of the following examples..

• '1+2x+x^3+4x^5+x^14'

• '1+2m+m3+4m5+xm14'

• 'q14 + 4q5 + q3 + 2q + 1'

• 'g(x) = 1+2x+x3+4x5+x14'

• 'g(z) 1+2z+z3+4z5+z14'

• 'p(x) = x{14} + 4x{5} + x{3} + 2{x} + 1'

• '[D14 + 4D5 + D3 + 2D + 1', ...'

9-31

9 Reed-Solomon Coding

Estimate BER of 8-PSK in AWGN with Reed-Solomon Coding

Transmit Reed-Solomon encoded data using 8-PSK over an AWGN channel. Demodulate
and decode the received signal and collect error statistics. Plot the bit error rate estimate.

Define the example parameters.

M = 8; % Modulation order

bps = log2(M); % Bits per symbol

N = 7; % RS codeword length

K = 5; % RS message length

Create modulator, demodulator, AWGN channel, and error rate objects.

pskModulator = comm.PSKModulator('ModulationOrder',M,'BitInput',true);

pskDemodulator = comm.PSKDemodulator('ModulationOrder',M,'BitOutput',true);

awgnChannel = comm.AWGNChannel('BitsPerSymbol',bps);

errorRate = comm.ErrorRate;

Create a (7,5) Reed-Solomon encoder and decoder pair which accepts bit inputs.

rsEncoder = comm.RSEncoder('BitInput',true,'CodewordLength',N,'MessageLength',K);

rsDecoder = comm.RSDecoder('BitInput',true,'CodewordLength',N,'MessageLength',K);

Set the range of values. Initialize the error statistics matrix.

ebnoVec = (3:0.5:8)';

errorStats = zeros(length(ebnoVec),3);

Estimate the bit error rate for each value. The simulation runs until either 100
errors or bits is encountered. The main simulation loop processing includes encoding,
modulation, demodulation, and decoding.

for i = 1:length(ebnoVec)

 awgnChannel.EbNo = ebnoVec(i);

 reset(errorRate)

 while errorStats(i,2) < 100 && errorStats(i,3) < 1e7

 data = randi([0 1],1500,1); % Generate binary data

 encData = rsEncoder(data); % RS encode

 modData = pskModulator(encData); % Modulate

 rxSig = awgnChannel(modData); % Pass signal through AWGN

 rxData = pskDemodulator(rxSig); % Demodulate

9-32

 Estimate BER of 8-PSK in AWGN with Reed-Solomon Coding

 decData = rsDecoder(rxData); % RS decode

 errorStats(i,:) = errorRate(data,decData); % Collect error statistics

 end

end

Fit a curve to the BER data using berfit. Generate an estimate of 8-PSK performance
without coding using the berawgn function.

berCurveFit = berfit(ebnoVec,errorStats(:,1));

berNoCoding = berawgn(ebnoVec,'psk',8,'nondiff');

Plot the BER data, the BER curve fit, and the estimated performance without RS coding.

semilogy(ebnoVec,errorStats(:,1),'b*', ...

ebnoVec,berCurveFit,'c-',ebnoVec,berNoCoding,'r')

ylabel('BER')

xlabel('Eb/No (dB)')

legend('Data','Curve Fit','No Coding')

grid

9-33

9 Reed-Solomon Coding

The (7,5) RS code improves the required to achieve a bit error rate by,
approximately, 1.4 dB.

9-34

 Transmit and Receive Shortened Reed-Solomon Codes

Transmit and Receive Shortened Reed-Solomon Codes

Transmit and receive standard and shortened RS-encoded, 64-QAM-modulated data
through an AWGN channel. Compare the performance of the standard and shortened
codes.

Set the parameters for the Reed-Solomon code, where N is the codeword length, K is the
nominal message length, and S is the shortened message length. Specify the modulation
order, M.

N = 63; % Codeword length

K = 51; % Message length

S = 39; % Shortened message length

M = 64; % Modulation order

Specify the simulation parameters, where numErrors is the number of errors per Eb/No
point, and numBits is the maximum number of bits per Eb/No point. Specify the range of
Eb/No values to be simulated. Initialize the BER arrays.

numErrors = 200;

numBits = 1e7;

ebnoVec = (8:13)';

[ber0,ber1] = deal(zeros(size(ebnoVec)));

Create an error rate object to collect error statistics.

errorRate = comm.ErrorRate;

Create a Reed-Solomon encoder and decoder pair for an RS(63,51) code. Calculate the
code rate.

rsEncoder = comm.RSEncoder(N,K,'BitInput',true);

rsDecoder = comm.RSDecoder(N,K,'BitInput',true);

rate = K/N;

Execute the main processing loop.

for k = 1:length(ebnoVec)

 % Convert the coded Eb/No to an SNR. Initialize the error statistics

 % vector.

 snrdB = ebnoVec(k) + 10*log10(rate) + 10*log10(log2(M));

 errorStats = zeros(3,1);

9-35

9 Reed-Solomon Coding

 while errorStats(2) < numErrors && errorStats(3) < numBits

 % Generate binary data.

 txData = randi([0 1],K*log2(M),1);

 % Encode the data.

 encData = rsEncoder(txData);

 % Apply 64-QAM modulation.

 txSig = qammod(encData,M, ...

 'UnitAveragePower',true,'InputType','bit');

 % Pass the signal through an AWGN channel.

 rxSig = awgn(txSig,snrdB);

 % Demodulated the noisy signal.

 demodSig = qamdemod(rxSig,M, ...

 'UnitAveragePower',true,'OutputType','bit');

 % Decode the data.

 rxData = rsDecoder(demodSig);

 % Compute the error statistics.

 errorStats = errorRate(txData,rxData);

 end

 % Save the BER data, and reset the errorRate counter.

 ber0(k) = errorStats(1);

 reset(errorRate)

end

Create a Reed-Solomon generator polynomial for an RS(63,51) code.

gp = rsgenpoly(N,K,[],0);

Create a Reed-Solomon encoder and decoder pair using shortened message length S and
generator polynomial gp. Calculate the rate of the shortened code.

rsEncoder = comm.RSEncoder(N,K,gp,S,'BitInput',true);

rsDecoder = comm.RSDecoder(N,K,gp,S,'BitInput',true);

rate = S/(N-(K-S));

Execute the main processing loop using the shortened Reed-Solomon code.

for k = 1:length(ebnoVec)

9-36

 Transmit and Receive Shortened Reed-Solomon Codes

 % Convert the coded Eb/No to an SNR. Initialize the error statistics

 % vector.

 snrdB = ebnoVec(k) + 10*log10(rate) + 10*log10(log2(M));

 errorStats = zeros(3,1);

 while errorStats(2) < numErrors && errorStats(3) < numBits

 % Generate binary data.

 txData = randi([0 1],S*log2(M),1);

 % Encode the data.

 encData = rsEncoder(txData);

 % Apply 64-QAM modulation.

 txSig = qammod(encData,M, ...

 'UnitAveragePower',true,'InputType','bit');

 % Pass the signal through an AWGN channel.

 rxSig = awgn(txSig,snrdB);

 % Demodulated the noisy signal.

 demodSig = qamdemod(rxSig,M, ...

 'UnitAveragePower',true,'OutputType','bit');

 % Decode the data.

 rxData = rsDecoder(demodSig);

 % Compute the error statistics.

 errorStats = errorRate(txData,rxData);

 end

 % Save the BER data, and reset the errorRate counter.

 ber1(k) = errorStats(1);

 reset(errorRate)

end

Calculate the approximate BER for an RS (63,51) code.

berapprox = bercoding(ebnoVec,'RS','hard',N,K,'qam',64);

Compare the BER curves for the RS(63,51) and RS(51,39) codes. Plot the theoretically
approximated BER curve. Observe that shortening the code does not affect performance.

semilogy(ebnoVec,ber0,'o-',ebnoVec,ber1,'c^-',ebnoVec,berapprox,'k--')

9-37

9 Reed-Solomon Coding

legend('RS(63,51)','RS(51,39)','Theory')

xlabel('Eb/No (dB)')

ylabel('Bit Error Rate')

grid

9-38

10

Galois Fields

10 Galois Fields

Working with Galois Fields

In this section...

“Creating Galois Field Arrays” on page 10-2
“Using Galois Field Arrays” on page 10-2
“Arithmetic in Galois Fields” on page 10-3
“Using MATLAB® Functions with Galois Arrays” on page 10-4
“Hamming Code Example” on page 10-5

This example illustrates how to work with Galois fields.

Galois fields are used in error-control coding, where a Galois field is an algebraic field
with a finite number of members. A Galois field that has 2m members is denoted by
GF(2m), where m is an integer between 1 and 16 in this example.

Creating Galois Field Arrays

You create Galois field arrays using the GF function. To create the element 3 in the
Galois field 22, you can use the following command:

A = gf(3,2)

A = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 3

Using Galois Field Arrays

You can now use A as if it were a built-in MATLAB® data type. For example, here is how
you can add two elements in a Galois field together:

A = gf(3,2);

B = gf(1,2);

10-2

 Working with Galois Fields

C = A+B

C = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 2

Arithmetic in Galois Fields

Note that 3 + 1 = 2 in this Galois field. The rules for arithmetic operations are different
for Galois field elements compared to integers. To see some of the differences between
Galois field arithmetic and integer arithmetic, first look at an addition table for integers
0 through 3:

 +__0__1__2__3

 0| 0 1 2 3

 1| 1 2 3 4

 2| 2 3 4 5

 3| 3 4 5 6

You can define such a table in MATLAB with the following commands:

A = ones(4,1)*[0 1 2 3];

B = [0 1 2 3]'*ones(1,4);

Table = A+B

Table =

 0 1 2 3

 1 2 3 4

 2 3 4 5

 3 4 5 6

Similarly, create an addition table for the field GF(2^2) with the following commands:

A = gf(ones(4,1)*[0 1 2 3],2);

B = gf([0 1 2 3]'*ones(1,4),2);

A+B

10-3

10 Galois Fields

ans = GF(2^2) array. Primitive polynomial = D^2+D+1 (7 decimal)

Array elements =

 0 1 2 3

 1 0 3 2

 2 3 0 1

 3 2 1 0

Using MATLAB® Functions with Galois Arrays

Many other MATLAB functions will work with Galois arrays. To see this, first create a
couple of arrays.

A = gf([1 33],8);

B = gf([1 55],8);

Now you can multiply two polynomials.

C = conv(A,B)

C = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal)

Array elements =

 1 22 153

You can also find roots of a polynomial. (Note that they match the original values in A
and B.)

roots(C)

ans = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal)

Array elements =

 33

 55

10-4

 Working with Galois Fields

Hamming Code Example

The most important application of Galois field theory is in error-control coding. The
rest of this example uses a simple error-control code, a Hamming code. An error-control
code works by adding redundancy to information bits. For example, a (7,4) Hamming
code maps 4 bits of information to 7-bit codewords. It does this by multiplying the 4-bit
codeword by a 4 x 7 matrix. You can obtain this matrix with the HAMMGEN function:

[H,G] = hammgen(3)

H =

 1 0 0 1 0 1 1

 0 1 0 1 1 1 0

 0 0 1 0 1 1 1

G =

 1 1 0 1 0 0 0

 0 1 1 0 1 0 0

 1 1 1 0 0 1 0

 1 0 1 0 0 0 1

H is the parity-check matrix and G is the generator matrix. To encode the information
bits [0 1 0 0], multiply the information bits [0 1 0 0] by the generator matrix G:

A = gf([0 1 0 0],1)

Code = A*G

A = GF(2) array.

Array elements =

 0 1 0 0

Code = GF(2) array.

Array elements =

10-5

10 Galois Fields

 0 1 1 0 1 0 0

Suppose somewhere along transmission, an error is introduced into this codeword. (Note
that a Hamming code can correct only 1 error.)

Code(1) = 1 % Place a 1 where there should be a 0.

Code = GF(2) array.

Array elements =

 1 1 1 0 1 0 0

You can use the parity-check matrix H to determine where the error occurred, by
multiplying the codeword by H:

H*Code'

ans = GF(2) array.

Array elements =

 1

 0

 0

To find the error, look at the parity-check matrix H. The column in H that matches [1 0
0]' is the location of the error. Looking at H, you can see that the first column is [1 0 0]'.
This means that the first element of the vector Code contains the error.

H

H =

 1 0 0 1 0 1 1

 0 1 0 1 1 1 0

 0 0 1 0 1 1 1

10-6

11

Convolutional Coding

• “Punctured Convolutional Coding” on page 11-2
• “Iterative Decoding of a Serially Concatenated Convolutional Code” on page 11-8
• “Punctured Convolutional Encoding” on page 11-14
• “Rate 2/3 Convolutional Code in AWGN” on page 11-21
• “Estimate BER for Hard and Soft Decision Viterbi Decoding” on page 11-24

11 Convolutional Coding

Punctured Convolutional Coding

This example shows how to use the convolutional encoder and Viterbi decoder System
objects to simulate a punctured coding system. The complexity of a Viterbi decoder
increases rapidly with the code rate. Puncturing is a technique that allows the encoding
and decoding of higher rate codes using standard rate 1/2 encoders and decoders.

Introduction

This example showcases the simulation of a communication system consisting of a
random binary source, a convolutional encoder, a BPSK modulator, an additive white
Gaussian noise (AWGN) channel, and a Viterbi decoder. The example shows how to
run simulations to obtain bit error rate (BER) curves and compares these curves to a
theoretical bound.

Initialization

Convolutional Encoding with Puncturing

Create a rate 1/2, constraint length 7 ConvolutionalEncoder System object. This encoder
takes one-bit symbols as inputs and generates 2-bit symbols as outputs. If you assume 3-
bit message words as inputs, then the encoder will generate 6-bit codeword outputs.

convEncoder = comm.ConvolutionalEncoder(poly2trellis(7, [171 133]));

Specify a puncture pattern to create a rate 3/4 code from the previous rate 1/2 code using
the puncture pattern vector [1;1;0;1;1;0]. The ones in the puncture pattern vector indicate
that bits in positions 1, 2, 4, and 5 are transmitted, while the zeros indicate that bits
in positions 3 and 6 are punctured or removed from the transmitted signal. The effect
of puncturing is that now, for every 3 bits of input, the punctured code generates 4 bits
of output (as opposed to the 6 bits produced before puncturing). This results in a rate
3/4 code. In the example at hand, the length of the puncture pattern vector must be an
integer multiple of 6 since 3-bit inputs get converted into 6-bit outputs by the rate 1/2
convolutional encoder.

To set the desired puncture pattern in the convolutional encoder System object,
hConvEnc , set the PuncturePatternSource property to Property and the
PuncturePattern property to [1;1;0;1;1;0] .

convEncoder.PuncturePatternSource = 'Property';

convEncoder.PuncturePattern = [1;1;0;1;1;0];

Modulator and Channel

11-2

 Punctured Convolutional Coding

Create a BPSKModulator System object to transmit the encoded data using binary phase
shift keying modulation over a channel.

bpskMod = comm.BPSKModulator;

Create an AWGNChannel System object. Set the NoiseMethod property of the channel
to Signal to noise ratio (Eb/No) to specify the noise level using the energy per
bit to noise power spectral density ratio (Eb/No). When running simulations, test the
coding system for different values of Eb/No ratio by changing the EbNo property of the
channel object. The output of the BPSK modulator generates unit power signals; set
the SignalPower property to 1 Watt. The system at hand is at the symbol rate; set the
SamplesPerSymbol property to 1.

channel = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (Eb/No)',...

 'SignalPower', 1, 'SamplesPerSymbol', 1);

Viterbi Decoding with Depuncturing

Configure a ViterbiDecoder System object so it decodes the punctured code specified
for the convolutional encoder. This example assumes unquantized inputs to the Viterbi
decoder, so set the InputFormat property to Unquantized .

vitDecoder = comm.ViterbiDecoder(poly2trellis(7, [171 133]), ...

 'InputFormat', 'Unquantized');

In general, the puncture pattern vectors you use for the convolutional encoder
and Viterbi decoder must be the same. To specify the puncture pattern, set the
PuncturePatternSource property of the Viterbi decoder System object, hVitDec , to
Property . Set the PuncturePattern property to the same puncture pattern vector you
use for the convolutional encoder.

Because the punctured bits are not transmitted, there is no information to indicate their
values. As a result, the decoding process ignores them.

vitDecoder.PuncturePatternSource = 'Property';

vitDecoder.PuncturePattern = convEncoder.PuncturePattern;

For a rate 1/2 code with no puncturing, you normally set the traceback depth of a Viterbi
decoder to a value close to 40. Decoding punctured codes requires a higher value, in order
to give the decoder enough data to resolve the ambiguities that the punctures introduce.
This example uses a traceback depth of 96. Set this value using the TraceBackDepth
property of the Viterbi decoder object, hVitDec .

11-3

11 Convolutional Coding

vitDecoder.TracebackDepth = 96;

Calculating the Error Rate

Create an ErrorRate calculator System object to compare decoded bits to the original
transmitted bits. The output of the error rate calculator object is a three-element vector
containing the calculated bit error rate (BER), the number of errors observed, and the
number of bits processed. The Viterbi decoder creates a delay in the output decoded bit
stream equal to the traceback length. To account for this delay set the ReceiveDelay
property of the error rate calculator System object to 96.

errorCalc = comm.ErrorRate('ReceiveDelay', vitDecoder.TracebackDepth);

Stream Processing Loop

Analyze the BER performance of the punctured coding system for different noise levels.

Uncoded and Coded Eb/No Ratio Values

Typically, you measure system performance according to the value of the energy per
bit to noise power spectral density ratio (Eb/No) available at the input of the channel
encoder. The reason for this is that this quantity is directly controlled by the systems
engineer. Analyze the performance of the coding system for Eb/No values between 2 and
5 dB.

EbNoEncoderInput = 2:0.5:5; % in dB

The signal going into the AWGN channel is the encoded signal. Convert the Eb/No values
so that they correspond to the energy ratio at the encoder output. If you input three bits
to the encoder and obtain four bit outputs, then the energy relation is given by the 3/4
rate as follows:

EbNoEncoderOutput = EbNoEncoderInput + 10*log10(3/4);

Simulation loop

To obtain BER performance results, transmit frames of 3000 bits through the
communications system. For each Eb/No value, stop simulations upon reaching a specific
number of errors or transmissions. To improve the accuracy of the results, increase the
target number of errors or the maximum number of transmissions.

frameLength = 3000; % this value must be an integer multiple of 3

targetErrors = 300;

maxNumTransmissions = 5e6;

11-4

 Punctured Convolutional Coding

Loop through the encoded Eb/No values (the simulation will take a few seconds to
complete).

BERVec = zeros(3,length(EbNoEncoderOutput)); % Allocate memory to store results

for n=1:length(EbNoEncoderOutput)

 reset(errorCalc)

 reset(convEncoder)

 reset(vitDecoder)

 channel.EbNo = EbNoEncoderOutput(n); % Set the channel EbNo value for simulation

 while (BERVec(2,n) < targetErrors) && (BERVec(3,n) < maxNumTransmissions)

 % Generate binary frames of size specified by the frameLength variable

 data = randi([0 1], frameLength, 1);

 % Convolutionally encode the data

 encData = convEncoder(data);

 % Modulate the encoded data

 modData = bpskMod(encData);

 % Pass the modulated signal through an AWGN channel

 channelOutput = channel(modData);

 % Pass the real part of the channel complex outputs as the unquantized

 % input to the Viterbi decoder.

 decData = vitDecoder(real(channelOutput));

 % Compute and accumulate errors

 BERVec(:,n) = errorCalc(data, decData);

 end

end

Compare Results to Theoretical Curves

We compare the simulation results using an approximation of the bit error probability
bound for a punctured code as per [1]. The following commands compute an
approximation of this bound using the first seven terms of the summation for Eb/No
values in 2:0.5:5 . The values used for nerr are found in Table 2 of [2].

dist = 5:11;

nerr = [42 201 1492 10469 62935 379644 2253373];

codeRate = 3/4;

bound = nerr*(1/6)*erfc(sqrt(codeRate*(10.0.^((2:.02:5)/10))'*dist))';

Plot results. If the target number of errors or maximum number of transmissions you
specify for the simulation are too small, the curve fitting algorithm might fail.

berfit(EbNoEncoderInput,BERVec(1,:)); % Curve-fitted simulation results

hold on;

semilogy((2:.02:5),bound,'g'); % Theoretical results

11-5

#PuncturedConvCodingExample-20
#PuncturedConvCodingExample-20

11 Convolutional Coding

legend('Empirical BER','Fit for simulated BER', 'Theoretical bound on BER')

axis([1 6 10^-5 1])

In some cases, at lower bit error rates, simulation results appear to indicate error rates
slightly above the bound. This results from simulation variance (if fewer than 500 bit
errors are observed) or from the finite traceback depth in the decoder.

Summary

We utilized several System objects to simulate a communications system with
convolutional coding and puncturing. We simulated the system to obtain BER
performance versus different Eb/No ratio values. The BER results were compared to
theoretical bounds.

11-6

 Punctured Convolutional Coding

Selected Bibliography

1 Yasuda, Y., K. Kashiki, and Y. Hirata, "High Rate Punctured Convolutional Codes
for Soft Decision Viterbi Decoding," IEEE® Transactions on Communications, Vol.
COM-32, March, 1984, pp. 315-319

2 Begin, G., Haccoun, D., and Paquin, C., "Further results on High-Rate Punctured
Convolutional Codes for Viterbi and Sequential Decoding," IEEE Transactions on
Communications, Vol. 38, No. 11, November, 1990, p. 1923

11-7

11 Convolutional Coding

Iterative Decoding of a Serially Concatenated Convolutional Code

In this section...

“Exploring the Example” on page 11-8
“Variables in the Example” on page 11-9
“Creating a Serially Concatenated Code” on page 11-10
“Convolutional Encoding Details” on page 11-10
“Decoding Using an Iterative Process” on page 11-11
“Computations in Each Iteration” on page 11-11
“Results of the Iterative Loop” on page 11-12
“Results and Displays” on page 11-12

This model shows how to use an iterative process to decode a serially concatenated
convolutional code (SCCC).

Note: This example presents technology covered under U.S. Patent Number 6,023,783,
"Hybrid concatenated codes and iterative decoding," assigned to the California Institute
of Technology. The end user of this product is hereby granted a limited license to use
this example solely for the purpose of assessing possible commercial and educational
applications of the technology. Any other use or modification of this example may
constitute a violation of this and/or other patents.

Exploring the Example

The simulation generates information bits, encodes them using a serially concatenated
convolutional code, and transmits the coded information along a noisy channel. The
simulation then decodes the received coded information, using an iterative decoding
process, and computes error statistics based on different numbers of iterations.
Throughout the simulation, the error rates appear in a Display block.

Open the model, doc_iterative_decoding_sccc, by entering the following on the MATLAB
command line.

doc_iterative_decoding_sccc

11-8

 Iterative Decoding of a Serially Concatenated Convolutional Code

Variables in the Example

The Model Parameters block lets you vary the values of some quantities that the model
uses. The table below indicates their names and meanings.

Name Meaning

Eb/No Eb/N0 in channel noise, measured in
dB; used to compute the variance of the
channel noise

Block size The number of bits in each frame of
uncoded data

11-9

11 Convolutional Coding

Name Meaning

Number of iterations The number of iterations to use when
decoding

Seed The initial seed in the Random Interleaver
and Random Deinterleaver blocks

Creating a Serially Concatenated Code

The encoding portion of the example uses a Convolutional Encoder block to encode
a data frame, a Random Interleaver block to shuffle the bits in the codewords, and
another Convolutional Encoder block to encode the interleaved bits. Because these
blocks are connected in series with each other, the resulting code is called a serially
concatenated code.

Together, these blocks encode the 1024-bit data frame into a 3072-bit frame representing
a concatenated code. These sizes depend on the model's Block size parameter (see the
Model Parameters block). The code rate of the concatenated code is 1/3.

In general, the purpose of interleaving is to protect codewords from burst errors in a
noisy channel. A burst error that corrupts interleaved data actually has a small effect on
each of several codewords, rather than a large effect on any one codeword. The smaller
the error in an individual codeword, the greater the chance that the decoder can recover
the information correctly.

Convolutional Encoding Details

The two instances of the Convolutional Encoder block use their Trellis structure
parameters to specify the convolutional codes. The table below lists the polynomials that
define each of the two convolutional codes. The second encoder has two inputs and uses
two rows of memory registers.

 Outer Convolutional Code Inner Convolutional Code

First row: 1+D+D2, 0, and
1+D2

Generator Polynomials 1+D+D2 and 1+D2

Second row: 0, 1+D+D2, and
1+D

11-10

 Iterative Decoding of a Serially Concatenated Convolutional Code

 Outer Convolutional Code Inner Convolutional Code

Feedback Polynomials 1+D+D2 1+D+D2 for each row
Constraint Lengths 3 3 for each row
Code rate 1/2 2/3

Decoding Using an Iterative Process

The decoding portion of this example consists of two APP Decoder blocks, a Random
Deinterleaver block, and several other blocks. Together, these blocks form a loop
and operate at a rate six times that of the encoding portion of the example. The loop
structure and higher rate combine to make the decoding portion an iterative process.
Using multiple iterations improves the decoding performance. You can control the
number of iterations by setting the Number of iterations parameter in the model's
Model Parameters block. The default number of iterations is six.

Computations in Each Iteration

In each iteration, the decoding portion of the example decodes the inner convolutional
code, deinterleaves the result, and decodes the outer convolutional code. The outer
decoder's L(u) output signal represents the updated likelihoods of original message bits
(that is, input bits to the outer encoder).

The looping strategy in this example enables the inner decoder to benefit in the next
iteration from the outer decoder's work. To understand how the loop works, first recall
the meanings of these signals:

• The outer decoder's L(c) output signal represents the updated likelihoods of code bits
from the outer encoder.

• The inner decoder's L(u) input represents the likelihoods of input bits to the inner
encoder.

The feedback loop recognizes that the primary distinction between these two signals is in
the interleaving operation that occurs between the outer and inner encoders. Therefore,
the loop interleaves the L(c) output of the outer decoder to replicate that interleaving
operation, delays the interleaved data to ensure that the inner decoder's two input ports
represent data from the same time steps, and resets the L(u) input to the inner decoder
to zero after every six iterations.

11-11

11 Convolutional Coding

Results of the Iterative Loop

The result of decoding is a 1024-element frame whose elements indicate the likelihood
that each of the 1024 message bits was a 0 or a 1. A nonnegative element indicates that
the message bit was probably a 1, and a negative element indicates that the message bit
was probably a 0. The Hard Decision block converts nonnegative and negative values to
1's and 0's, respectively, so that the results have the same form as the original uncoded
binary data.

Results and Displays

The example includes a large Display block that shows error rates after comparing
the received data with the transmitted data. The number of error rates in the display
is the number of iterations in the decoding process. The first error rate reflects the
performance of a decoding process that uses one iteration, the second error rate reflects
the performance of a decoding process that uses two iterations, and so on. The series
of error rates shows that the error rate generally decreases as the number of iterations
increases.

Change the Eb/No to 1 dB and run the simulation. Observe that the bit error rates
decrease with each iteration.

11-12

 Iterative Decoding of a Serially Concatenated Convolutional Code

References

[1] Benedetto, S., D. Divsalar, G. Montorsi, and F. Pollara, "Serial Concatenation of
Interleaved Codes: Performance Analysis, Design, and Iterative Decoding," JPL
TDA Progress Report, Vol. 42-126, August 1996.

[2] Divsalar, Dariush, and Fabrizio Pollara, Hybrid Concatenated Codes and Iterative
Decoding, U. S. Patent No. 6,023,783, Feb. 8, 2000.

[3] Heegard, Chris, and Stephen B. Wicker, Turbo Coding, Boston, Kluwer Academic
Publishers, 1999.

11-13

11 Convolutional Coding

Punctured Convolutional Encoding

In this section...

“Structure of the Example” on page 11-14
“Generating Random Data” on page 11-15
“Convolutional Encoding with Puncturing” on page 11-15
“Transmitting Data” on page 11-16
“Demodulating” on page 11-16
“Viterbi Decoding of Punctured Codes” on page 11-16
“Calculating the Error Rate” on page 11-17
“Evaluating Results” on page 11-17

This model shows how to use the Convolutional Encoder and Viterbi Decoder blocks
to simulate a punctured coding system. The complexity of a Viterbi decoder increases
rapidly with the code rate. Puncturing is a technique that allows the encoding and
decoding of higher rate codes using standard rate 1/2 encoders and decoders.

The example is somewhat similar to the one that appears in “Soft-Decision Decoding” on
page 6-61, which shows convolutional coding without puncturing.

Structure of the Example

This example contains these blocks from the Communications System Toolbox.

• Bernoulli Binary Generator: Create a sequence of random bits to use as a
message.

• Convolutional Encoder: Encode the message using the convolutional encoder.
• BPSK Modulator Baseband: Modulate the encoded message.
• AWGN Channel: Pass the modulated signal through a noisy channel.
• Error Rate Calculation: Compute the number of discrepancies between the

original and recovered messages.

Open the example, doc_punct_conv_code, by entering the following at the MATLAB
command prompt.

doc_punct_conv_code

11-14

 Punctured Convolutional Encoding

Generating Random Data

The Bernoulli Binary Generator block produces the information source for this
simulation. The block generates a frame of three random bits at each sample time. The
Samples per frame parameter determines the number of rows of the output frame.

Convolutional Encoding with Puncturing

The Convolutional Encoder block encodes the data from the Bernoulli Binary Generator.
This example uses the same code as described in “Soft-Decision Decoding” on page 6-61.

The puncture pattern is specified by the Puncture vector parameter in the mask. The
puncture vector is a binary column vector. A 1 indicates that the bit in the corresponding

11-15

11 Convolutional Coding

position of the input vector is sent to the output vector, while a 0 indicates that the bit is
removed.

For example, to create a rate 3/4 code from the rate 1/2, constraint length 7 convolutional
code, the optimal puncture vector is [1 1 0 1 1 0].' (where the .' after the vector indicates
the transpose). Bits in positions 1, 2, 4, and 5 are transmitted, while bits in positions 3
and 6 are removed. Now, for every 3 bits of input, the punctured code generates 4 bits of
output (as opposed to the 6 bits produced before puncturing). This makes the rate 3/4.

In this example, the output from the Bernoulli Binary Generator is a column vector of
length 3. Because the rate 1/2 Convolutional Encoder doubles the length of each vector,
the length of the puncture vector must divide 6.

Transmitting Data

The AWGN Channel block simulates transmission over a noisy channel. The parameters
for the block are set in the mask as follows:

• The Mode parameter for this block is set to Signal to noise ratio (Es/No).
• The Es/No parameter is set to 2 dB. This value typically is changed from one

simulation run to the next.
• The preceding modulation block generates unit power signals so the Input signal

power is set to 1 Watt.
• The Symbol period is set to 0.75 seconds because the code has rate 3/4.

Demodulating

In this simulation, the Viterbi Decoder block is set to accept unquantized inputs. As a
result, the simulation passes the channel output through a Simulink Complex to Real-
Imag block that extracts the real part of the complex samples.

Viterbi Decoding of Punctured Codes

The Viterbi Decoder block is configured to decode the same rate 1/2 code specified in the
Convolutional Encoder block.

In this example, the decision type is set to Unquantized. For codes without puncturing,
you would normally set the Traceback depth for this code to a value close to 40.
However, for decoding punctured codes, a higher value is required to give the decoder
enough data to resolve the ambiguities introduced by the punctures.

11-16

 Punctured Convolutional Encoding

Since the punctured bits are not transmitted, there is no information to indicate their
values. As a result they are ignored in the decoding process.

The Puncture vector parameter indicates the locations of the punctures or the bits to
ignore in the decoding process. Each 1 in the puncture vector indicates a transmitted bit
while each 0 indicates a puncture or the bit to ignore in the input to the decoder.

In general, the two Puncture vector parameters in the Convolutional Encoder and
Viterbi Decoder must be the same.

Calculating the Error Rate

The Error Rate Calculation block compares the decoded bits to the original source bits.
The output of the Error Rate Calculation block is a three-element vector containing the
calculated bit error rate (BER), the number of errors observed, and the number of bits
processed.

In the mask for this block, the Receive delay parameter is set to 96, because the
Traceback depth value of 96 in the Viterbi Decoder block creates a delay of 96. If there
were other blocks in the model that created delays, the Receive delay would equal the
sum of all the delays.

BER simulations typically run until a minimum number of errors have occurred, or until
the simulation processes a maximum number of bits. The Error Rate Calculation block
uses its Stop simulation mode to set these limits and to control the duration of the
simulation.

Evaluating Results

Generating a bit error rate curve requires multiple simulations. You can perform
multiple simulations using the sim command. Follow these steps:

• In the model window, remove the Display block and the line connected to its port.
• In the AWGN Channel block, set the Es/No parameter to the variable name EsNodB.
• In the Error Rate Calculation block, set Output data to Workspace and then set

Variable name to BER_Data.
• Save the model in your working directory under a different name, such as

my_punct_conv_code.slx.

11-17

11 Convolutional Coding

• Execute the following code, which runs the simulation multiple times and gathers
results.

CodeRate = 0.75;

EbNoVec = [2:.5:5];

EsNoVec = EbNoVec + 10*log10(CodeRate);

BERVec = zeros(length(EsNoVec),3);

for n=1:length(EsNoVec),

 EsNodB = EsNoVec(n);

 sim('my_commpunctcnvcod');

 BERVec(n,:) = BER_Data;

end

To confirm the validity of the results, compare them to an established performance
bound. The bit error rate performance of a rate r = (n-1)/n punctured code is bounded
above by the expression:

P
n

b

d d

d

free

£
-

()
=

•

Â
1

2 1()
()w erfc rd E /Nb 0

In this expression, erfc denotes the complementary error function, r is the code rate,
and both dfree and ωd are dependent on the particular code. For the rate 3/4 code of this
example, dfree = 5, ω5 = 42, ω6 = 201, ω7 = 1492, and so on. See reference [1] for more
details.

The following commands compute an approximation of this bound using the first seven
terms of the summation (the values used for nerr are found in Table 2 of reference [2]:

dist = [5:11];

nerr = [42 201 1492 10469 62935 379644 2253373];

CodeRate = 3/4;

EbNo_dB = [2:.02:5];

EbNo = 10.0.^(EbNo_dB/10);

arg = sqrt(CodeRate*EbNo'*dist);

bound = nerr*(1/6)*erfc(arg)';

To plot the simulation and theoretical results in the same figure, use the commands
below.

berfit(EbNoVec',BERVec(:,1)); % Curve-fitted simulation results

hold on;

semilogy(EbNo_dB,bound,'g'); % Theoretical results

11-18

 Punctured Convolutional Encoding

legend('Simulated BER','Fit for simulated BER',...

 'Theoretical bound on BER')

In some cases, at the lower bit error rates, you might notice simulation results that
appear to indicate error rates slightly above the bound. This can result from simulation
variance (if fewer than 500 bit errors are observed) or from the finite traceback depth in
the decoder.

References

[1] Yasuda, Y., K. Kashiki, and Y. Hirata, "High Rate Punctured Convolutional Codes
for Soft Decision Viterbi Decoding," IEEE Transactions on Communications, Vol.
COM-32, March, 1984, pp. 315-319.

11-19

11 Convolutional Coding

[2] Begin, G., Haccoun, D., and Paquin, C., "Further results on High-Rate Punctured
Convolutional Codes for Viterbi and Sequential Decoding," IEEE Transactions on
Communications, Vol. 38, No. 11, November, 1990, p. 1923.

11-20

 Rate 2/3 Convolutional Code in AWGN

Rate 2/3 Convolutional Code in AWGN

This example generates a bit error rate versus Eb/No curve for a link that uses 16-QAM
modulation and a rate 2/3 convolutional code in AWGN.

Set the modulation order, and compute the number of bits per symbol.

M = 16;

k = log2(M);

Create a trellis for a rate 2/3 convolutional code. Set the traceback and code rate
parameters.

trellis = poly2trellis([5 4],[23 35 0; 0 5 13]);

traceBack = 16;

codeRate = 2/3;

Create a convolutional encoder and its equivalent Viterbi decoder.

convEncoder = comm.ConvolutionalEncoder('TrellisStructure',trellis);

vitDecoder = comm.ViterbiDecoder('TrellisStructure',trellis, ...

 'InputFormat','Hard','TracebackDepth',traceBack);

Create a 16-QAM modulator and demodulator pair having bit inputs and outputs. Set the
constellation to normalize on average power.

qamModulator = comm.RectangularQAMModulator('BitInput',true,'NormalizationMethod','Average power');

qamDemodulator = comm.RectangularQAMDemodulator('BitOutput',true,'NormalizationMethod','Average power');

Create an error rate object. Set the receiver delay to twice the traceback depth, which is
the delay through the decoder.

errorRate = comm.ErrorRate('ReceiveDelay',2*traceBack);

Set the range of Eb/No values to be simulated. Initialize the bit error rate statistics
matrix.

ebnoVec = 0:2:10;

errorStats = zeros(length(ebnoVec),3);

Simulate the link by following these steps:

• Generate binary data.

11-21

11 Convolutional Coding

• Encode the data with a rate 2/3 convolutional code.
• Modulate the encoded data.
• Pass the signal through an AWGN channel.
• Demodulate the received signal.
• Decode the demodulated signal by using a Viterbi decoder.
• Collect the error statistics.

for m = 1:length(ebnoVec)

 snr = ebnoVec(m) + 10*log10(k*codeRate);

 while errorStats(m,2) <= 100 && errorStats(m,3) <= 1e7

 dataIn = randi([0 1],10000,1);

 dataEnc = convEncoder(dataIn);

 txSig = qamModulator(dataEnc);

 rxSig = awgn(txSig,snr);

 demodSig = qamDemodulator(rxSig);

 dataOut = vitDecoder(demodSig);

 errorStats(m,:) = errorRate(dataIn,dataOut);

 end

 reset(errorRate)

end

Compute the theoretical BER vs. Eb/No curve for the case without forward error
correction coding.

berUncoded = berawgn(ebnoVec','qam',M);

Plot the BER vs. Eb/No curve for the simulated coded data and the theoretical uncoded
data.

semilogy(ebnoVec,[errorStats(:,1) berUncoded])

grid

legend('Coded','Uncoded')

xlabel('Eb/No (dB)')

ylabel('Bit Error Rate')

11-22

 Rate 2/3 Convolutional Code in AWGN

At higher Eb/No values, the error correcting code provides performance benefits.

11-23

11 Convolutional Coding

Estimate BER for Hard and Soft Decision Viterbi Decoding
Estimate bit error rate (BER) performance for hard-decision and soft-decision Viterbi
decoders in AWGN. Compare the performance to that of an uncoded 64-QAM link.

Set the simulation parameters.

clear; close all

rng default

M = 64; % Modulation order

k = log2(M); % Bits per symbol

EbNoVec = (4:10)'; % Eb/No values (dB)

numSymPerFrame = 1000; % Number of QAM symbols per frame

Initialize the BER results vectors.

berEstSoft = zeros(size(EbNoVec));

berEstHard = zeros(size(EbNoVec));

Set the trellis structure and traceback length for a rate 1/2, constraint length 7,
convolutional code.

trellis = poly2trellis(7,[171 133]);

tbl = 32;

rate = 1/2;

The main processing loops performs these steps:

• Generate binary data.
• Convolutinally encode the data.
• Apply QAM modulation to the data symbols.
• Pass the modulated signal through an AWGN channel.
• Demodulate the received signal using hard decision and approximate LLR methods.
• Viterbi decode the signals using hard and unquantized methods.
• Calculate the number of bit errors.

The while loop continues to process data until either 100 errors are encountered or 1e7
bits are transmitted.

for n = 1:length(EbNoVec)

 % Convert Eb/No to SNR

 snrdB = EbNoVec(n) + 10*log10(k*rate);

 % Reset the error and bit counters

11-24

 Estimate BER for Hard and Soft Decision Viterbi Decoding

 [numErrsSoft,numErrsHard,numBits] = deal(0);

 while numErrsSoft < 100 && numBits < 1e7

 % Generate binary data and convert to symbols

 dataIn = randi([0 1],numSymPerFrame*k,1);

 % Convolutionally encode the data

 dataEnc = convenc(dataIn,trellis);

 % QAM modulate

 txSig = qammod(dataEnc,M,'InputType','bit');

 % Pass through AWGN channel

 rxSig = awgn(txSig,snrdB,'measured');

 % Demodulate the noisy signal using hard decision (bit) and

 % approximate LLR approaches

 rxDataHard = qamdemod(rxSig,M,'OutputType','bit');

 rxDataSoft = qamdemod(rxSig,M,'OutputType','approxllr', ...

 'NoiseVariance',10.^(snrdB/10));

 % Viterbi decode the demodulated data

 dataHard = vitdec(rxDataHard,trellis,tbl,'cont','hard');

 dataSoft = vitdec(rxDataSoft,trellis,tbl,'cont','unquant');

 % Calculate the number of bit errors in the frame. Adjust for the

 % decoding delay, which is equal to the traceback depth.

 numErrsInFrameHard = biterr(dataIn(1:end-tbl),dataHard(tbl+1:end));

 numErrsInFrameSoft = biterr(dataIn(1:end-tbl),dataSoft(tbl+1:end));

 % Increment the error and bit counters

 numErrsHard = numErrsHard + numErrsInFrameHard;

 numErrsSoft = numErrsSoft + numErrsInFrameSoft;

 numBits = numBits + numSymPerFrame*k;

 end

 % Estimate the BER for both methods

 berEstSoft(n) = numErrsSoft/numBits;

 berEstHard(n) = numErrsHard/numBits;

end

Plot the estimated hard and soft BER data. Plot the theoretical performance for an
uncoded 64-QAM channel.

11-25

11 Convolutional Coding

semilogy(EbNoVec,[berEstSoft berEstHard],'-*')

hold on

semilogy(EbNoVec,berawgn(EbNoVec,'qam',M))

legend('Soft','Hard','Uncoded','location','best')

grid

xlabel('Eb/No (dB)')

ylabel('Bit Error Rate')

As expected, the soft decision decoding produces the best results.

11-26

12

Channel Modeling and RF
Impairments

• “AWGN Channel” on page 12-2
• “Fading Channels” on page 12-5
• “MIMO Channel” on page 12-47
• “RF Impairments” on page 12-48

12 Channel Modeling and RF Impairments

AWGN Channel

In this section...

“Section Overview” on page 12-2
“AWGN Channel Noise Level” on page 12-2

Section Overview

An AWGN channel adds white Gaussian noise to the signal that passes through it. You
can create an AWGN channel in a model using the comm.AWGNChannel System object,
the AWGN Channel block, or the awgn function.

The following examples use an AWGN Channel: “QPSK Transmitter and Receiver” and
“General QAM Modulation in an AWGN Channel” on page 7-60.

AWGN Channel Noise Level

The relative power of noise in an AWGN channel is typically described by quantities such
as

• Signal-to-noise ratio (SNR) per sample. This is the actual input parameter to the
awgn function.

• Ratio of bit energy to noise power spectral density (EbNo). This quantity is used by
BERTool and performance evaluation functions in this toolbox.

• Ratio of symbol energy to noise power spectral density (EsNo)

Relationship Between EsNo and EbNo

The relationship between EsNo and EbNo, both expressed in dB, is as follows:

E N E N ks b/ / log ()0 0 1010 (dB) (dB)= +

where k is the number of information bits per symbol.

In a communication system, k might be influenced by the size of the modulation alphabet
or the code rate of an error-control code. For example, if a system uses a rate-1/2 code
and 8-PSK modulation, then the number of information bits per symbol (k) is the product
of the code rate and the number of coded bits per modulated symbol: (1/2) log2(8) = 3/2.

12-2

 AWGN Channel

In such a system, three information bits correspond to six coded bits, which in turn
correspond to two 8-PSK symbols.

Relationship Between EsNo and SNR

The relationship between EsNo and SNR, both expressed in dB, is as follows:

E N T T SNRs sym samp/ log /0 1010 (dB) (dB) for complex inpu= () + tt signals

 (dB) (dB) for rE N T T SNRs sym samp/ log . /0 1010 0 5= () + eeal input signals

where Tsym is the signal's symbol period and Tsamp is the signal's sampling period.

For example, if a complex baseband signal is oversampled by a factor of 4, then EsNo
exceeds the corresponding SNR by 10 log10(4).

Derivation for Complex Input Signals

You can derive the relationship between EsNo and SNR for complex input signals as
follows:

E N S T N B

T F S N

s sym n

sym s

/ log () / (/)

log () (/)

0 10

10

10

10

 (dB) = ◊()

= ◊())

= () +10 10log /T T SNRsym samp (dB)

where

• S = Input signal power, in watts
• N = Noise power, in watts
• Bn = Noise bandwidth, in Hertz
• Fs = Sampling frequency, in Hertz

Note that Bn= Fs = 1/Tsamp.

Behavior for Real and Complex Input Signals

The following figures illustrate the difference between the real and complex cases by
showing the noise power spectral densities Sn(f) of a real bandpass white noise process
and its complex lowpass equivalent.

12-3

12 Channel Modeling and RF Impairments

B/2-B/2

N0

Sn(f)

f

N0/2

Sn(f)

f
-fc fc

Complex Lowpass Noise Power Spectral Density

Real Bandpass Noise Power Spectral Density

BB

12-4

 Fading Channels

Fading Channels

In this section...

“Overview of Fading Channels” on page 12-5
“Methodology for Simulating Multipath Fading Channels:” on page 12-8
“Specify Fading Channels” on page 12-12
“Specify Doppler Spectrum of Fading Channel” on page 12-16
“Configure Channel Objects” on page 12-20
“Use Fading Channels” on page 12-23
“Rayleigh Fading Channel” on page 12-24
“Rician Fading Channel” on page 12-43
“Additional Examples Using Fading Channels” on page 12-45

Overview of Fading Channels

Using Communications System Toolbox you can implement fading channels using
objects or blocks. Rayleigh and Rician fading channels are useful models of real-world
phenomena in wireless communications. These phenomena include multipath scattering
effects, time dispersion, and Doppler shifts that arise from relative motion between the
transmitter and receiver. This section gives a brief overview of fading channels and
describes how to implement them using the toolbox.

The figure below depicts direct and major reflected paths between a stationary radio
transmitter and a moving receiver. The shaded shapes represent reflectors such as
buildings.

Transmitter

ReceiverDirect

Reflected

Reflected

The major paths result in the arrival of delayed versions of the signal at the receiver.
In addition, the radio signal undergoes scattering on a local scale for each major path.
Such local scattering is typically characterized by a large number of reflections by objects

12-5

12 Channel Modeling and RF Impairments

near the mobile. These irresolvable components combine at the receiver and give rise
to the phenomenon known as multipath fading. Due to this phenomenon, each major
path behaves as a discrete fading path. Typically, the fading process is characterized by
a Rayleigh distribution for a nonline-of-sight path and a Rician distribution for a line-of-
sight path.

The relative motion between the transmitter and receiver causes Doppler shifts. Local
scattering typically comes from many angles around the mobile. This scenario causes a
range of Doppler shifts, known as the Doppler spectrum. The maximum Doppler shift
corresponds to the local scattering components whose direction exactly opposes the
mobile's trajectory.

Implement Fading Channel Using an Object

A baseband channel model for multipath propagation scenarios that you implement
using objects includes:

• N discrete fading paths, each with its own delay and average power gain. A channel
for which N = 1 is called a frequency-flat fading channel. A channel for which N > 1
is experienced as a frequency-selective fading channel by a signal of sufficiently wide
bandwidth.

• A Rayleigh or Rician model for each path.
• Default channel path modeling using a Jakes Doppler spectrum, with a maximum

Doppler shift that can be specified. Other types of Doppler spectra allowed (identical
or different for all paths) include: flat, restricted Jakes, asymmetrical Jakes,
Gaussian, bi-Gaussian, and rounded.

If the maximum Doppler shift is set to 0 or omitted during the construction of a
channel object, then the object models the channel as static (i.e., fading does not
evolve with time), and the Doppler spectrum specified has no effect on the fading
process.

Some additional information about typical values for delays and gains is in “Choose
Realistic Channel Property Values” on page 12-20

Implement Fading Channel Using a Block

The Channels block library includes Rayleigh and Rician fading blocks that can simulate
real-world phenomena in mobile communications. These phenomena include multipath
scattering effects, as well as Doppler shifts that arise from relative motion between the
transmitter and receiver.

12-6

 Fading Channels

Note To model a channel that involves both fading and additive white Gaussian noise,
use a fading channel block connected in series with the AWGN Channel block, where the
fading channel block comes first.

The table below indicates the situations in which each fading channel block is
appropriate.

Signal Path Channel Block

Direct line-of-sight path from transmitter
to receiver

Multipath Rician Fading Channel

One or more major reflected paths from
transmitter to receiver

Multipath Rayleigh Fading Channel

In the case of multiple major reflected paths, a single instance of the Multipath Rayleigh
Fading Channel block can model all of them simultaneously. The number of paths that
the block uses is the length of either the Delay vector or the Gain vector parameter,
whichever length is larger. (If both of these parameters are vectors, they must have the
same length; if exactly one of these parameters is a scalar, the block expands it into a
vector whose size matches that of the other vector parameter.)

Choosing appropriate block parameters for your situation is important. For more details
about the parameters of fading channel blocks, see

• The reference pages for the Multipath Rayleigh Fading Channel block and the
Multipath Rician Fading Channel block

• The “Choose Realistic Channel Property Values” on page 12-20 section
under “Configuring Channel Objects” in the Communications System Toolbox
documentation

Compensate for Fading Response

A communication system involving a fading channel usually requires component(s) that
compensate for the fading response. Typical approaches to compensate for fading include:

• Differential modulation or a one-tap equalizer helps compensate for a frequency-
flat fading channel. See the M-DPSK Modulator Baseband block Help page or the
example in “Compare Empirical Results to Theoretical Results” on page 12-25 for
information about implementing differential modulation.

• An equalizer with multiple taps helps compensate for a frequency-selective fading
channel. See “Equalization” on page 6-212 for more information.

12-7

12 Channel Modeling and RF Impairments

The Communications Link with Adaptive Equalization example illustrates why
compensating for a fading channel is necessary.

Visualize a Fading Channel

You can plot a fading channel's characteristics using channel visualization tools.

For communication systems that you implement using objects, see “Channel
Visualization” on page 15-30.

For communication systems that you implement using blocks, there are two ways
to visualize fading channel response. One way is to double-click the block during a
simulation. The second way is to select Open channel visualization at start of
simulation in the block dialog box.

Methodology for Simulating Multipath Fading Channels:

The Rayleigh and Rician multipath fading channel simulators in Communications
System Toolbox use the band-limited discrete multipath channel model of section
9.1.3.5.2 in [1]. This implementation assumes that the delay power profile and the
Doppler spectrum of the channel are separable [1]. The multipath fading channel is
therefore modeled as a linear finite impulse-response (FIR) filter. Let s

i{ } denote the

set of samples at the input to the channel. Then the samples yi{ } at the output of the

channel are related to s
i{ } through:

y s gi i n n

n N

N

= -

=-

Â
1

2

where g
n{ } is the set of tap weights given by:

g a
T

n N n Nn k
k

sk

K

= -
È

Î
Í

˘

˚
˙ - £ £

=
Â sinc ,

t

1
1 2

In the equations above:

• T
s is the input sample period to the channel.

12-8

 Fading Channels

• tk{ } , where 1 £ £k K , is the set of path delays. K is the total number of paths in the
multipath fading channel.

• ak{ } , where 1 £ £k K , is the set of complex path gains of the multipath fading
channel. These path gains are uncorrelated with each other.

• N
1 and N

2 are chosen so that g
n

 is small when n is less than -N
1 or greater than

N
2 .

Two techniques, filtered Gaussian noise and sum-of-sinusoids, are used to generate the
set of complex path gains, ak .

Each path gain process ak is generated by the following steps:

Filtered Gaussian Noise Technique

1 A complex uncorrelated (white) Gaussian process with zero mean and unit variance
is generated in discrete time.

2 The complex Gaussian process is filtered by a Doppler filter with frequency response
H f S f() ()= , where S f() denotes the desired Doppler power spectrum.

3 The filtered complex Gaussian process is interpolated so that its sample period
is consistent with that of the input signal. A combination of linear and polyphase
interpolation is used.

Sum-of-sinusoids Technique

1 Mutually uncorrelated Rayleigh fading waveforms are generated using the method
described in [2], where i = 1 corresponds to the in-phase component and i = 2
corresponds to the quadrature component.

z t t j t k K

t
N

f

k k k

k
i

k
k n

i

() () (), , , ,

() cos

() ()

()
,

()

= + =

=

m m

m p

1 2 1 2

2
2

…

tt i
k n
i

n

N k

+() =

=

Â q
,

() , ,

1

1 2

Where

• Nk specifies the number of sinusoids used to model a single path.

12-9

12 Channel Modeling and RF Impairments

•
f
k n

i
,

()

 is the discrete Doppler frequency and is calculated for each sinusoid
component within a single path.

•
q

k n

i

,
()

 is the phase of the nth component of m
k

i()

 and is an i.i.d. random variable

having a uniform distribution over the interval 0 2, p](.
• t is the fading process time.

The discrete Doppler frequencies,
f
k n

i
,

()

, with maximum shift fmax are given by

f f

f
N

n

k n
i

k n
i

k
k
i

,
()

max ,
()

max ,
()

cos

cos

= ()
= -Ê

ËÁ
ˆ
¯̃

+
È

Î
Í

˘

a

p
a

2

1

2 0
˚̊
˙

where

a
p

k

i i

kN

k

K
i k K

,
() , , , , ,

0

1
1

4 2
1 2 1 2@ …-() ◊

+
= =

-
and

2 In order to advance the fading process in time, an initial time parameter, tinit, is
introduced. The fading waveforms become

m p qk
i

k
k n

i
init k n

i

n

N

t
N

f t t i
k

()
,

()
,

()() cos , ,= +() +() =
=

Â
2

2 1 2

1

When tinit = 0, the fading process starts at time zero. A positive value of tinit advances
the fading process relative to time zero while maintaining its continuity.

3 Channel fading samples are generated using the GMEDS1 [2] algorithm.

Calculate Complex Coefficients

The complex process resulting from either technique, z
k
, is scaled to obtain the correct

average path gain. In the case of a Rayleigh channel, the fading process is obtained as:

12-10

 Fading Channels

a z
k k k

= W

where

W
k k

E a= È
Î

˘
˚

2

In the case of a Rician channel, the fading process is obtained as:

a
z

K

K

K
e

k k
k

r k

r k

r k

j f td LOS k LOS k=
+

+
+

È

Î
Í
Í

˘

˚
˙
˙

+()W
,

,

,

, , ,

1 1

2p q

where K
r k,

 is the Rician K-factor of the k-th path, f d LOS k, ,

 is the Doppler shift of the

line-of-sight component of the k-th path (in Hz), and q
LOS k,

 is the initial phase of the line-
of-sight component of the k-th path (in rad).

At the input to the band-limited multipath channel model, the transmitted symbols must
be oversampled by a factor at least equal to the bandwidth expansion factor introduced
by pulse shaping. For example, if sinc pulse shaping is used, for which the bandwidth
of the pulse-shaped signal is equal to the symbol rate, then the bandwidth expansion
factor is 1, and at least one sample per symbol is required at the input to the channel. If
a raised cosine (RC) filter with a factor in excess of 1 is used, for which the bandwidth of
the pulse-shaped signal is equal to twice the symbol rate, then the bandwidth expansion
factor is 2, and at least two samples per symbol are required at the input to the channel.

For additional information, see the article A Matlab-based Object-Oriented Approach to
Multipath Fading Channel Simulation, located on MATLABCentral.

References

[1] Jeruchim, M. C., Balaban, P., and Shanmugan, K. S., Simulation of Communication
Systems, Second Edition, New York, Kluwer Academic/Plenum, 2000.

[2] Pätzold, Matthias, Cheng-Xiang Wang, and Bjorn Olav Hogstand. “Two New Sum-of-
Sinusoids-Based Methods for the Efficient Generation of Multiple Uncorrelated

12-11

http://www.mathworks.com/matlabcentral/fileexchange/18869-a-matlab-based-object-oriented-approach-to-multipath-fading-channel-simulation
http://www.mathworks.com/matlabcentral/fileexchange/18869-a-matlab-based-object-oriented-approach-to-multipath-fading-channel-simulation

12 Channel Modeling and RF Impairments

Rayleigh Fading Waveforms.” IEEE Transactions on Wireless Communications.
Vol. 8, Number 6, 2009, pp. 3122–3131.

Specify Fading Channels

Communications System Toolbox models a fading channel as a linear FIR filter. Filtering
a signal using a fading channel involves these steps:

1 Create a channel object that describes the channel that you want to use. A channel
object is a type of MATLAB variable that contains information about the channel,
such as the maximum Doppler shift.

2 Adjust properties of the channel object, if necessary, to tailor it to your needs. For
example, you can change the path delays or average path gains.

Note: Setting the maximum path delay greater than 100 samples may generate an
‘Out of memory’ error.

3 Apply the channel object to your signal using the filter function.

This section describes how to define, inspect, and manipulate channel objects. The topics
are:

• “Creating Channel Objects” on page 12-12
• “Display Object Properties” on page 12-13
• “Change Object Properties” on page 12-14
• “Relationships Among Channel Object Properties” on page 12-15

Creating Channel Objects

The rayleighchan and ricianchan functions create fading channel objects. The table
below indicates the situations in which each function is suitable.

Function Object Situation Modeled

rayleighchan Rayleigh fading channel
object

One or more major reflected
paths

ricianchan Rician fading channel object One direct line-of-sight path,
possibly combined with one
or more major reflected
paths

12-12

 Fading Channels

For example, the command below creates a channel object representing a Rayleigh fading
channel that acts on a signal sampled at 100,000 Hz. The maximum Doppler shift of the
channel is 130 Hz.

c1 = rayleighchan(1/100000,130); % Rayleigh fading channel object

The object c1 is a valid input argument for the filter function. To learn how to use the
filter function to filter a signal using a channel object, see “Use Fading Channels” on
page 12-23.

Duplicate and Copy Objects

Another way to create an object is to duplicate an existing object and then adjust the
properties of the new object, if necessary. If you do this, it is important to use a copy
command such as

c2 = copy(c1); % Copy c1 to create an independent c2.

instead of c2 = c1. The copy command creates a copy of c1 that is independent of c1.
By contrast, the command c2 = c1 creates c2 as merely a reference to c1, so that c1
and c2 always have indistinguishable content.

Display Object Properties

A channel object has numerous properties that record information about the channel
model, about the state of a channel that has already filtered a signal, and about the
channel's operation on a future signal. You can view the properties in these ways:

• To view all properties of a channel object, enter the object's name in the Command
Window.

• To view a specific property of a channel object or to assign the property's value to a
variable, enter the object's name followed by a dot (period), followed by the name of
the property.

In the example below, entering c1 causes MATLAB to display all properties of the
channel object c1. Some of the properties have values from the rayleighchan command
that created c1, while other properties have default values.

c1 = rayleighchan(1/100000,130); % Create object.

c1 % View all properties of c1.

g = c1.PathGains % Retrieve the PathGains property of c1.

12-13

12 Channel Modeling and RF Impairments

The output is

c1 =

 ChannelType: 'Rayleigh'

 InputSamplePeriod: 1.0000e-005

 DopplerSpectrum: [1x1 doppler.jakes]

 MaxDopplerShift: 130

 PathDelays: 0

 AvgPathGaindB: 0

 NormalizePathGains: 1

 StoreHistory: 0

 StorePathGains: 0

 PathGains: -0.0428 + 0.4732i

 ChannelFilterDelay: 0

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

g =

 -0.0428 + 0.4732i

A Rician fading channel object has an additional property that does not appear above,
namely, a scalar KFactor property.

For more information about what each channel property means, see the reference page
for the rayleighchan or ricianchan function.

Change Object Properties

To change the value of a writeable property of a channel object, issue an assignment
statement that uses dot notation on the channel object. More specifically, dot notation
means an expression that consists of the object's name, followed by a dot, followed by the
name of the property.

The example below illustrates how to change the ResetBeforeFiltering property,
indicating you do not want to reset the channel before each filtering operation.

c1 = rayleighchan(1/100000,130) % Create object.

c1.ResetBeforeFiltering = 0 % Do not reset before filtering.

The output below displays all the properties of the channel object before and after the
change in the value of the ResetBeforeFiltering property. In the second listing of
properties, the ResetBeforeFiltering property has the value 0.

12-14

 Fading Channels

c1 =

 ChannelType: 'Rayleigh'

 InputSamplePeriod: 1.0000e-005

 DopplerSpectrum: [1x1 doppler.jakes]

 MaxDopplerShift: 130

 PathDelays: 0

 AvgPathGaindB: 0

 NormalizePathGains: 1

 StoreHistory: 0

 StorePathGains: 0

 PathGains: 0.5781 + 0.9020i

 ChannelFilterDelay: 0

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

c1 =

 ChannelType: 'Rayleigh'

 InputSamplePeriod: 1.0000e-005

 DopplerSpectrum: [1x1 doppler.jakes]

 MaxDopplerShift: 130

 PathDelays: 0

 AvgPathGaindB: 0

 NormalizePathGains: 1

 StoreHistory: 0

 StorePathGains: 0

 PathGains: 0.5781 + 0.9020i

 ChannelFilterDelay: 0

 ResetBeforeFiltering: 0

 NumSamplesProcessed: 0

Note: Some properties of a channel object are read-only. For example, you cannot assign
a new value to the NumSamplesProcessed property because the channel automatically
counts the number of samples it has processed since the last reset.

Relationships Among Channel Object Properties

Some properties of a channel object are related to each other such that when one
property's value changes, another property's value must change in some corresponding
way to keep the channel object consistent. For example, if you change the vector length
of PathDelays, then the value of AvgPathGaindB must change so that its vector length

12-15

12 Channel Modeling and RF Impairments

equals that of the new value of PathDelays. This is because the length of each of the
two vectors equals the number of discrete paths of the channel. For details about linked
properties and an example, see the reference page for rayleighchan or ricianchan.

Specify Doppler Spectrum of Fading Channel

The Doppler spectrum of a channel object is specified through its DopplerSpectrum
property. The value of this property must be either:

• A Doppler object. In this case, the same Doppler spectrum applies to each path of the
channel object.

• A vector of Doppler objects of the same length as the PathDelays vector property. In
this case, the Doppler spectrum of each path is given by the corresponding Doppler
object in the vector.

A Doppler object contains all the properties used to characterize the Doppler spectrum,
with the exception of the maximum Doppler shift, which is a property of the channel
object. This section describes how to create and manipulate Doppler objects, and how to
assign them to the DopplerSpectrum property of channel objects.

Create a Doppler Object

The sole purpose of Doppler objects is to specify the value of the DopplerSpectrum
property of channel objects. Doppler objects can be created using one of seven functions:
doppler.ajakes, doppler.bigaussian, doppler.jakes, doppler.rjakes,
doppler.flat, doppler.gaussian, and doppler.rounded. For a description of
each of these functions and the underlying theory, refer to their corresponding reference
pages.

For example, a Gaussian spectrum with a normalized (by the maximum Doppler shift of
the channel) standard deviation of 0.1, can be created as:

d = doppler.gaussian(0.1);

Duplicate Doppler Objects

As in the case of channel objects, Doppler objects can be duplicated using the copy
function. The command:

d2 = copy(d1);

creates a Doppler object d2 with the same properties as that of d1. d1 and d2 are then
separate instances of a Doppler object, in that modifying either one will not affect the

12-16

 Fading Channels

other. Using d1 = d2 instead will cause both d1 and d2 to reference the same instance
of a Doppler object, in that modifying either one will cause the same modification to the
other.

View and Change Doppler Object Properties

The syntax for viewing and changing Doppler object properties is the same as for the case
of channel objects (see “Display Object Properties” on page 12-13 and “Change Object
Properties” on page 12-14). The function disp can be used with Doppler objects to
display their properties.

In the following example, a rounded Doppler object with default properties is created and
displayed, and the third element of its CoeffRounded property is modified:

dr = doppler.rounded

dr =

 SpectrumType: 'Rounded'

 CoeffRounded: [1 -1.7200 0.7850]

dr.CoeffRounded(3) = 0.8250

dr =

 SpectrumType: 'Rounded'

 CoeffRounded: [1 -1.7200 0.8250]

Note that the property SpectrumType, which is common to all Doppler objects, is read-
only. It is automatically specified at object construction, and cannot be modified. If you
wish to use a different Doppler spectrum type, you need to create a new Doppler object of
the desired type.

Use Doppler Objects Within Channel Objects

The DopplerSpectrum property of a channel object can be changed by assigning to it
a Doppler object or a vector of Doppler objects. The following example illustrates how to
change the default Jakes Doppler spectrum of a constructed Rayleigh channel object to a
flat Doppler spectrum:

>> h = rayleighchan(1/9600, 100)

h =

12-17

12 Channel Modeling and RF Impairments

 ChannelType: 'Rayleigh'

 InputSamplePeriod: 1.0417e-004

 DopplerSpectrum: [1x1 doppler.jakes]

 MaxDopplerShift: 100

 PathDelays: 0

 AvgPathGaindB: 0

 NormalizePathGains: 1

 StoreHistory: 0

 StorePathGains: 0

 PathGains: -0.4007 - 0.2748i

 ChannelFilterDelay: 0

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

>> dop_flat = doppler.flat

dop_flat =

 SpectrumType: 'Flat'

>> h.DopplerSpectrum = dop_flat

h =

 ChannelType: 'Rayleigh'

 InputSamplePeriod: 1.0417e-004

 DopplerSpectrum: [1x1 doppler.flat]

 MaxDopplerShift: 100

 PathDelays: 0

 AvgPathGaindB: 0

 NormalizePathGains: 1

 StoreHistory: 0

 StorePathGains: 0

 PathGains: -0.4121 - 0.2536i

 ChannelFilterDelay: 0

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

The following example shows how to change the default Jakes Doppler spectrum of a
constructed Rician channel object to a Gaussian Doppler spectrum with normalized
standard deviation of 0.3, and subsequently display the DopplerSpectrum property,
and change the value of the normalized standard deviation to 1.1:

>> h = ricianchan(1/9600, 100, 2);

12-18

 Fading Channels

>> h.DopplerSpectrum = doppler.gaussian(0.3)

h =

 ChannelType: 'Rician'

 InputSamplePeriod: 1.0417e-004

 DopplerSpectrum: [1x1 doppler.gaussian]

 MaxDopplerShift: 100

 PathDelays: 0

 AvgPathGaindB: 0

 KFactor: 2

 DirectPathDopplerShift: 0

 DirectPathInitPhase: 0

 NormalizePathGains: 1

 StoreHistory: 0

 StorePathGains: 0

 PathGains: 0.8073 - 0.0769i

 ChannelFilterDelay: 0

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

>> h.DopplerSpectrum

ans =

 SpectrumType: 'Gaussian'

 SigmaGaussian: 0.3000

>> h.DopplerSpectrum.SigmaGaussian = 1.1;

The following example illustrates how to change the default Jakes Doppler spectrum of
a constructed three-path Rayleigh channel object to a vector of different Doppler spectra,
and then change the properties of the Doppler spectrum of the third path:

>> h = rayleighchan(1/9600, 100, [0 1e-4 2.1e-4]);

>> h.DopplerSpectrum = [doppler.flat doppler.flat doppler.rounded]

h =

 ChannelType: 'Rayleigh'

 InputSamplePeriod: 1.0417e-004

 DopplerSpectrum: [3x1 doppler.baseclass]

 MaxDopplerShift: 100

 PathDelays: [0 1.0000e-004 2.1000e-004]

12-19

12 Channel Modeling and RF Impairments

 AvgPathGaindB: [0 0 0]

 NormalizePathGains: 1

 StoreHistory: 0

 StorePathGains: 0

 PathGains: [0.4233 - 0.1113i -0.0785 + 0.1667i

 -0.2064 + 0.3531i]

 ChannelFilterDelay: 3

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 0

>> h.DopplerSpectrum(3).CoeffRounded = [1 -1.21 0.7];

If the DopplerSpectrum property of a channel object is a vector:

• If the length of the PathDelays vector property is increased, the length of
DopplerSpectrum is automatically increased to match the length of PathDelays, by
appending Jakes Doppler objects.

• If the length of the PathDelays vector property is decreased, the length of
DopplerSpectrum is automatically decreased to match the length of PathDelays,
by removing the last Doppler object(s).

Configure Channel Objects

Before you filter a signal using a channel object, make sure that the properties of
the channel have suitable values for the situation you want to model. This section
offers some guidelines to help you choose realistic values that are appropriate for your
modeling needs. The topics are

• “Choose Realistic Channel Property Values” on page 12-20
• “Configure Channel Objects Based on Simulation Needs” on page 12-23

The syntaxes for viewing and changing values of properties of channel objects are
described in “Specify Fading Channels” on page 12-12.

Choose Realistic Channel Property Values

Here are some tips for choosing property values that describe realistic channels:

Path Delays

• By convention, the first delay is typically set to zero. The first delay corresponds to
the first arriving path.

12-20

 Fading Channels

• For indoor environments, path delays after the first are typically between 1 ns and
100 ns (that is, between 1e-9 s and 1e-7 s).

• For outdoor environments, path delays after the first are typically between 100 ns
and 10 µs (that is, between 1e-7 s and 1e-5 s). Very large delays in this range might
correspond, for example, to an area surrounded by mountains.

Note: Setting the maximum path delay greater than 100 samples may generate an
‘Out of memory’ error.

• The ability of a signal to resolve discrete paths is related to its bandwidth. If the
difference between the largest and smallest path delays is less than about 1% of the
symbol period, then the signal experiences the channel as if it had only one discrete
path.

Average Path Gains

• The average path gains in the channel object indicate the average power gain of each
fading path. In practice, an average path gain value is a large negative dB value.
However, computer models typically use average path gains between -20 dB and 0 dB.

• The dB values in a vector of average path gains often decay roughly linearly as
a function of delay, but the specific delay profile depends on the propagation
environment.

• To ensure that the expected value of the path gains' total power is 1, you can
normalize path gains via the channel object's NormalizePathGains property.

Maximum Doppler Shifts

• Some wireless applications, such as standard GSM (Global System for Mobile
Communication) systems, prefer to specify Doppler shifts in terms of the speed of
the mobile. If the mobile moves at speed v (m/s), then the maximum Doppler shift is
calculated as follows, where f is the transmission carrier frequency in Hertz and c is
the speed of light (3e8 m/s).

f
vf

c
d =

• Based on this formula in terms of the speed of the mobile, a signal from a moving
car on a freeway might experience a maximum Doppler shift of about 80 Hz, while a
signal from a moving pedestrian might experience a maximum Doppler shift of about
4 Hz. These figures assume a transmission carrier frequency of 900 MHz.

12-21

12 Channel Modeling and RF Impairments

• A maximum Doppler shift of 0 corresponds to a static channel that comes from a
Rayleigh or Rician distribution.

K-Factor for Rician Fading Channels

• The Rician K-factor specifies the ratio of specular-to-diffuse power for a direct line-of-
sight path. The ratio is expressed linearly, not in dB.

• For Rician fading, the K-factor is typically between 1 and 10.
• A K-factor of 0 corresponds to Rayleigh fading.

Doppler Spectrum Parameters

• See the reference pages for the respective Doppler objects for descriptions of the
parameters and their significance.

12-22

 Fading Channels

Configure Channel Objects Based on Simulation Needs

Here are some tips for configuring a channel object to customize the filtering process:

• If your data is partitioned into a series of vectors (that you process within a
loop, for example), you can invoke the filter function multiple times while
automatically saving the channel's state information for use in a subsequent
invocation. The state information is visible to you in the channel object's PathGains
and NumSamplesProcessed properties, but also involves properties that are internal
rather than visible.

Note: To maintain continuity from one invocation to the next, you must set the
ResetBeforeFiltering property of the channel object to 0.

• If you set the ResetBeforeFiltering property of the channel object to 0 and want
the randomness to be repeatable, use the reset function before filtering any signals
to reset both the channel and the state of the internal random number generator.

• If you want to reset the channel before a filtering operation so that it does not use
any previously stored state information, either use the reset function or set the
ResetBeforeFiltering property of the channel object to 1. The former method
resets the channel object once, while the latter method causes the filter function to
reset the channel object each time you invoke it.

• If you want to normalize the fading process so that the expected value of the path
gains' total power is 1, set the NormalizePathGains property of the channel object
to 1.

Use Fading Channels

After you have created a channel object as described in “Specify Fading Channels” on
page 12-12, you can use the filter function to pass a signal through the channel. The
arguments to filter are the channel object and the signal. At the end of the filtering
operation, the channel object retains its state so that you can find out the final path gains
or the total number of samples that the channel has processed since it was created or
reset. If you configured the channel to avoid resetting its state before each new filtering
operation (ResetBeforeFiltering is 0), then the retention of state information is
important for maintaining continuity between successive filtering operations.

For an example that illustrates the basic syntax and state retention, see “Power of a
Faded Signal” on page 12-24.

12-23

12 Channel Modeling and RF Impairments

If you want to use the channel visualization tool to plot the characteristics of a channel
object, you need to set the StateHistory property of the channel object to 1 so that it
is populated with plot information. See “Channel Visualization” on page 15-30 for
details.

Rayleigh Fading Channel

The following examples use fading channels:

• “Power of a Faded Signal” on page 12-24
• “Compare Empirical Results to Theoretical Results” on page 12-25
• “Work with Delays” on page 12-27
• “Filter Using a Loop” on page 12-28
• “Store Channel State History” on page 12-29
• “Use the Channel Visualization Tool” on page 12-30

Power of a Faded Signal

The code below plots a faded signal's power (versus sample number). The code also
illustrates the syntax of the filter and rayleighchan functions and the state
retention of the channel object. Notice from the output that NumSamplesProcessed
equals the number of elements in sig, the signal.

c = rayleighchan(1/10000,100);

sig = 1i*ones(2000,1); % Generate signal

y = filter(c,sig); % Pass signal through channel

c % Display all properties of the channel

% Plot power of faded signal, versus sample number.

plot(20*log10(abs(y)))

The output and the plot follow.

c =

 ChannelType: 'Rayleigh'

 InputSamplePeriod: 1.0000e-004

 DopplerSpectrum: [1x1 doppler.jakes]

 MaxDopplerShift: 100

12-24

 Fading Channels

 PathDelays: 0

 AvgPathGaindB: 0

 NormalizePathGains: 1

 StoreHistory: 0

 StorePathGains: 0

 PathGains: -0.8062 + 0.2648i

 ChannelFilterDelay: 0

 ResetBeforeFiltering: 1

 NumSamplesProcessed: 2000

Compare Empirical Results to Theoretical Results

The code below creates a frequency-flat Rayleigh fading channel object and uses it
to process a DBPSK signal consisting of a single vector. The example continues by
computing the bit error rate of the system for different values of the signal-to-noise ratio.
Notice that the example uses filter before awgn; this is the recommended sequence to
use when you combine fading with AWGN.

% Create Rayleigh fading channel object.

12-25

12 Channel Modeling and RF Impairments

chan = rayleighchan(1/10000,100);

% Generate data and apply fading channel.

M = 2; % DBPSK modulation order

hMod = comm.DBPSKModulator; % Create a DPSK modulator

hDemod = comm.DBPSKDemodulator; % Create a DPSK demodulator

tx = randi([0 M-1],50000,1); % Generate a random bit stream

dpskSig = step(hMod, tx); % DPSK modulate the signal

fadedSig = filter(chan,dpskSig); % Apply the channel effects

% Compute error rate for different values of SNR.

SNR = 0:2:20; % Range of SNR values, in dB.

numSNR = length(SNR);

berVec = zeros(3, numSNR);

% Create an AWGNChannel and ErrorRate calculator System object

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)');

hErrorCalc = comm.ErrorRate;

for n = 1:numSNR

 hChan.SNR = SNR(n);

 rxSig = step(hChan,fadedSig); % Add Gaussian noise

 rx = step(hDemod, rxSig); % Demodulate

 reset(hErrorCalc)

 % Compute error rate.

 berVec(:,n) = step(hErrorCalc,tx,rx);

end

BER = berVec(1,:);

% Compute theoretical performance results, for comparison.

BERtheory = berfading(SNR,'dpsk',M,1);

% Plot BER results.

semilogy(SNR,BERtheory,'b-',SNR,BER,'r*');

legend('Theoretical BER','Empirical BER');

xlabel('SNR (dB)'); ylabel('BER');

title('Binary DPSK over Rayleigh Fading Channel');

With the parameters in the preceding code, the fading is slow enough to be considered
the same across two consecutive samples.

The resulting plot shows that the simulation results are close to the theoretical results
computed by berfading.

12-26

 Fading Channels

Work with Delays

The value of a channel object's ChannelFilterDelay property is the number of samples
by which the output of the channel lags the input. If you compare the input and output
data sets directly, you must take the delay into account by using appropriate truncating
or padding operations.

The example illustrates one way to account for the delay before computing a bit error
rate.

M = 2; % DQPSK modulation order

bitRate = 50000;

hMod = comm.DBPSKModulator; % Create a DPSK modulator

hDemod = comm.DBPSKDemodulator; % Create a DPSK demodulator

% Create Rayleigh fading channel object.

ch = rayleighchan(1/bitRate,4,[0 0.5/bitRate],[0 -10]);

delay = ch.ChannelFilterDelay;

tx = randi([0 M-1],50000,1); % Generate random bit stream

dpskSig = step(hMod,tx); % DPSK modulate signal

12-27

12 Channel Modeling and RF Impairments

fadedSig = filter(ch,dpskSig); % Apply channel effects

rx = step(hDemod,fadedSig); % Demodulate signal

% Compute bit error rate, taking delay into account.

hErrorCalc = comm.ErrorRate('ReceiveDelay', delay);

berVec = step(hErrorCalc,tx,rx);

ber = berVec(1)

num = berVec(2)

The output below shows that the error rate is small. If the example had not compensated
for the channel delay, the error rate would have been close to 1/2.

num =

 845

ber =

 0.0170

Filter Using a Loop

The section “Configure Channel Objects Based on Simulation Needs” on page 12-23
indicates how to invoke the filter function multiple times while maintaining continuity
from one invocation to the next. The example below invokes filter within a loop and
uses the small data sets from successive iterations to create an animated effect. The
particular channel in this example is a Rayleigh fading channel with two discrete major
paths.

% Set up parameters.

M = 4; % QPSK modulation order

hMod = comm.QPSKModulator;

bitRate = 50000; % Data rate is 50 kb/s

numTrials = 125; % Number of iterations of loop

% Create Rayleigh fading channel object.

ch = rayleighchan(1/bitRate,4,[0 2e-5],[0 -9]);

% Indicate that FILTER should not reset the channel

% in each iteration below.

ch.ResetBeforeFiltering = 0;

% Initialize scatter plot.

hConst = comm.ConstellationDiagram;

12-28

 Fading Channels

% Apply channel in a loop, maintaining continuity.

% Plot only the current data in each iteration.

for n = 1:numTrials

 tx = randi([0 M-1],500,1); % Generate random bit stream

 pskSig = step(hMod,tx); % PSK modulate signal

 fadedSig = filter(ch, pskSig); % Apply channel effects

 % Plot the new data from this iteration.

 step(hConst,fadedSig);

end

The scatter plot changes with each iteration of the loop, and the exact content varies
because the fading process involves random numbers.

Store Channel State History

By default, the PathGains property of a channel object stores the current complex path
gain vector.

Setting the StoreHistory property of a channel to true makes it store the last N path
gain vectors, where N is the length of the vector processed through the channel. The
following code illustrates this property

h = rayleighchan(1/100000, 130); % Rayleigh channel

tx = randi([0 1],10,1); % Random bit stream

hmod = comm.DBPSKModulator; % Create DBPSK Modulator

dpskSig = step(hmod,tx); % Process data by calling the step method

h.StoreHistory = true; % Allow states to be stored

y = filter(h, dpskSig); % Run signal through channel

h.PathGains % Display the stored path gains data

This example generates an output similar to the following:

 -0.7601 - 1.1853i

 -0.7540 - 1.1822i

 -0.7480 - 1.1791i

 -0.7419 - 1.1759i

 -0.7358 - 1.1728i

 -0.7298 - 1.1696i

 -0.7237 - 1.1665i

 -0.7177 - 1.1634i

 -0.7115 - 1.1599i

 -0.7053 - 1.1565i

12-29

12 Channel Modeling and RF Impairments

ans =

 0.0788 - 0.5305i

The last element is the current path gain of the channel.

Setting StoreHistory to true significantly slows down the execution speed of the
channel's filter function.

Use the Channel Visualization Tool

Communications System Toolbox software provides a plotting function that helps you
visualize the characteristics of a fading channel using a GUI. See “Fading Channels” on
page 12-5 for a description of fading channels and objects.

To open the channel visualization tool, type plot(h) at the command line, where h is
a channel object that contains plot information. To populate a channel object with plot
information, run a signal through it after setting its StoreHistory property to true.

For example, the following code opens the channel visualization tool showing a three-
path Rayleigh channel through which a random signal is passed:

% Three-Path Rayleigh channel

h = rayleighchan(1/100000, 130, [0 1.5e-5 3.2e-5], [0, -3, -3]);

tx = randi([0 1],500,1); % Random bit stream

hmod = comm.DBPSKModulator; % Create DBPSKModulator

dpskSig = step(hmod,tx); % DPSK signal

h.StoreHistory = true; % Allow states to be stored

y = filter(h, dpskSig); % Run signal through channel

plot(h); % Call Channel Visualization Tool

12-30

 Fading Channels

See “Examples of Using the Channel Visualization Tool” on page 12-41 for the basic
usage cases of the channel visualization tool.

This tool can also be accessed from Communications System Toolbox software.
Parts of the GUI

The Visualization pull-down menu allows you to choose the visualization method.

The Frame count counter shows the index of the current frame. It shows the number
of frames processed by the filter method since the channel object was constructed or
reset. A frame is a vector of M elements, interpreted to be M successive samples that are
uniformly spaced in time, with a sample period equal to that specified for the channel.

The Sample index slider control indicates which channel snapshot is currently being
displayed, while the Pause button pauses a running animation until you click it again.
The slider control and Pause button apply to all visualizations except the Doppler
Spectrum.

12-31

12 Channel Modeling and RF Impairments

The Animation pull-down menu allows you to select how you want to display the
channel snapshots within each frame. Setting this to Slow makes the tool show channel
snapshots in succession, starting at the sample set by the Sample index slider control.
Selecting Medium or Fast makes the tool show fewer uniformly spaced snapshots,
allowing you to go through the channel snapshots more rapidly. Selecting Interframe
only (the default selection) prevents automatic animation of snapshots within the
same frame. The Animation menu applies to all visualizations except the Doppler
Spectrum.
Visualization Options

The channel visualization tool plots the characteristics of a filter in various ways. Simply
choose the visualization method from the Visualization menu, and the plot updates
itself automatically.

The following visualization methods are currently available:
Impulse Response (IR)

This plot shows the magnitudes of two impulse responses: the multipath response
(infinite bandwidth) and the bandlimited channel response.

The multipath response is represented by stems, each corresponding to one multipath
component. The component with the smallest delay value is shown in red, and the

12-32

 Fading Channels

component with the largest delay value is shown in blue. Components with intermediate
delay values are shades between red and blue, becoming more blue for larger delays.

The bandlimited channel response is represented by the green curve. This response is the
result of convolving the multipath impulse response, described above, with a sinc pulse of
period, T, equal to the input signal's sample period.

The solid green circles represent the channel filter response sampled at rate 1/T. The
output of the channel filter is the convolution of the input signal (sampled at rate 1/
T) with this discrete-time FIR channel filter response. For computational speed, the
response is truncated.

The hollow green circles represent sample values not captured in the channel filter
response that is used for processing the input signal.

Note that these impulse responses vary over time. You can use the slider to visualize how
the impulse response changes over time for the current frame (i.e., input signal vector
over time).

Frequency Response (FR)

This plot shows the magnitude (in dB) of the frequency response of the multipath
channel over the signal bandwidth.

12-33

12 Channel Modeling and RF Impairments

As with the impulse response visualization, you can visualize how this frequency
response changes over time.

12-34

 Fading Channels

IR Waterfall

This plot shows the evolution of the magnitude impulse response over time.

It shows 10 snapshots of the bandlimited channel impulse response within the last
frame, with the darkest green curve showing the current response.

The time offset is the time of the channel snapshot relative to the current response time.

12-35

12 Channel Modeling and RF Impairments

Phasor Trajectory

This plot shows phasors (vectors representing magnitude and phase) for each multipath
component, using the same color code that was used for the impulse response plot.

The phasors are connected end to end in order of path delay, and the trajectory of the
resultant phasor is plotted as a green line. This resultant phasor is referred to as the
narrowband phasor.

This plot can be used to determine the impact of the multipath channel on a narrowband
signal. A narrowband signal is defined here as having a sample period much greater
than the span of delays of the multipath channel (alternatively, a signal bandwidth much
smaller than the coherence bandwidth of the channel). Thus, the multipath channel can
be represented by a single complex gain, which is the sum of all the multipath component
gains. When the narrowband phasor trajectory passes through or near the origin, it
corresponds to a deep narrowband fade.

12-36

 Fading Channels

Multipath Components

This plot shows the magnitudes of the multipath gains over time, using the same color
code as that used for the multipath impulse response.

The triangle marker and vertical dashed line represent the start of the current frame. If
a frame has been processed previously, its multipath gains may also be displayed.

12-37

12 Channel Modeling and RF Impairments

Multipath Gain

This plot shows the collective gains for the multipath channel for three signal
bandwidths.

A collective gain is the sum of component magnitudes, as explained in the following:

• Narrowband (magenta dots): This is the magnitude of the narrowband phasor in the
above trajectory plot. This curve is sometimes referred to as the narrowband fading
envelope.

• Current signal bandwidth (dashed blue line): This is the sum of the magnitudes of the
channel filter impulse response samples (the solid green dots in the impulse response
plot). This curve represents the maximum signal energy that can be captured using
a RAKE receiver. Its value (or metrics, such as theoretical BER, derived from it) is
sometimes referred to as the matched filter bound.

• Infinite bandwidth (solid red line): This is the sum of the magnitudes of the multipath
component gains.

In general, the variability of this multipath gain, or of the signal fading, decreases as
signal bandwidth is increased, because multipath components become more resolvable.

12-38

 Fading Channels

If the signal bandwidth curve roughly follows the narrowband curve, you might describe
the signal as narrowband. If the signal bandwidth curve roughly follows the infinite
bandwidth curve, you might describe the signal as wideband. With the right receiver, a
wideband signal exploits the path diversity inherent in a multipath channel.

Doppler Spectrum

This plot shows up to two Doppler spectra.

The first Doppler spectrum, represented by the dashed red line, is a theoretical spectrum
based on the Doppler filter response used in the multipath channel model. In the
preceding plot, the theoretical Doppler spectrum used for the multipath channel model
is known as the Jakes spectrum. Note that the plotted Doppler spectrum is normalized
to have a total power of 1. This Doppler spectrum is used to determine a Doppler filter
response. For practical purposes, the Doppler filter response is truncated, which has the
effect of modifying the Doppler spectrum, as shown in the plot.

The second Doppler spectrum, represented by the blue dots, is determined by measuring
the power spectrum of the multipath fading channel as the model generates path gains.
This measurement is meaningful only after enough path gains have been generated. The
title above the plot reports how many samples need to be processed through the channel
before either the first Doppler spectrum or an updated spectrum can be plotted.

12-39

12 Channel Modeling and RF Impairments

The Path Number edit box allows you to visualize the Doppler spectrum of the specified
path. The value entered in this box must be a valid path number, i.e., between 1 and the
length of the PathDelays vector property. Once you change the value of this field, the
new Doppler spectrum will appear as soon as the processing of the current frame has
ended.

If the measured Doppler spectrum is a good approximation of the theoretical Doppler
spectrum, the multipath channel model has generated enough fading gains to yield
a reasonable representation of the channel statistics. For instance, if you want to
determine the average BER of a communications link with a multipath channel and
you want a statistically accurate measure of this average, you may want to ensure
that the channel has processed enough samples to yield at least one Doppler spectrum
measurement.

It is possible that a multipath channel (e.g., a Rician channel) can have both specular
(line-of-sight) and diffuse components. In such a case, the Doppler spectrum would have
both a line component and a wideband component. The channel visualization tool only
shows the wideband component for the Doppler spectrum.

Unlike other visualizations, the Doppler spectrum visualization does not support
animation. Because there is no intraframe data to plot, the visualization tool only
updates the channel statistics at the end of each frame and therefore cannot pause
in the middle of a frame. If you switch to the Doppler spectrum visualization from a
different visualization that is in pause mode, the Pause button is subsequently disabled.
Disabling pause avoids interaction problems between the Doppler spectrum visualization
and other animation-style visualizations.

Scattering Function

This plot shows the Doppler spectra of each path versus the path delays, using the same
color code as that used for the multipath impulse response.

12-40

 Fading Channels

The principle of operation of the Scattering Function plot is similar to that of the Doppler
Spectrum plot. The main difference is that the Doppler spectra on this plot are not
normalized as they are on the Doppler Spectrum plot, in order to better visualize the
power delay profile.
Composite Plots

Several composite plots are also available. These are chosen by selecting the following
from the Visualization pull-down menu:

• IR and FR for impulse response and frequency response plots.
• Components and Gain for multipath components and multipath gain plots.
• Components and IR for multipath components and impulse response plots.
• Components, IR, and Phasor for multipath components, impulse response, and

phasor trajectory plots.

Examples of Using the Channel Visualization Tool

Here are two examples that show how you might interact with the GUI.
Visualize Samples Within a Frame

This example shows how to visualize samples within a frame through animation. The
following lines of code create a Rayleigh channel and open the channel visualization tool:

12-41

12 Channel Modeling and RF Impairments

% Create a fast fading channel

h = rayleighchan(1e-4, 100, [0 1.1e-4], [0 0]);

h.StoreHistory = 1; % Allow states to be stored

y = filter(h, ones(100,1)); % Process samples through channel

plot(h); % Open channel visualization tool

After selecting a visualization option and a speed in the Animation menu, move the
Sample index slider control all the way to the left and click Resume. The slider control
moves by itself during animation. The sample index increments automatically to show
which snapshot you are visualizing.

You can also move the slider control and glance through the samples of the frame as you
like.
Animate Snapshots Across Frames

This example shows how to animate snapshots across frames. The following lines of code
call the filter and plot methods within a loop to accomplish this:

Ts = 1e-4; % Sample period (s)

fd = 100; % Maximum Doppler shift

% Initialize DPSK modulator for M=4

hMod = comm.DPSKModulator(4);

% Path delay and gains

tau = [0.1 1.2 2.3 6.2 11.3]*Ts;

PdB = linspace(0, -10, length(tau)) - length(tau)/20;

nTrials = 10000; % Number of trials

N = 100; % Number of samples per frame

h = rayleighchan(Ts, fd, tau, PdB); % Create channel object

h.NormalizePathGains = false;

h.ResetBeforeFiltering = false;

h.StoreHistory = 1;

h % Show channel object

% Channel fading simulation

for trial = 1:nTrials

 x = randi([0 3],10000,1); % Random symbols

 dpskSig = step(hMod, x); % Modulated symbols

 y = filter(h, dpskSig); % Channel filter

 plot(h); % Plot channel response

12-42

 Fading Channels

 % The line below returns control to the command line in case

 % the GUI is closed while this program is still running

 if isempty(findobj('name', 'Multipath Channel')), break; end;

end

While the animation is running, you can move the slider control and change the sample
index (which also makes the animation pause). After clicking Resume, the plot continues
to animate.

The property ResetBeforeFiltering needs to be set to false so that the state
information in the channel is not reset after the processing of each frame.

Rician Fading Channel

Quasi-Static Channel Modeling

Typically, a path gain in a fading channel changes insignificantly over a period of 1/
(100fd) seconds, where fd is the maximum Doppler shift. Because this period corresponds
to a very large number of bits in many modern wireless data applications, assessing
performance over a statistically significant range of fading entails simulating a
prohibitively large amount of data. Quasi-static channel modeling provides a more
tractable approach, which you can implement using these steps:

1 Generate a random channel realization using a maximum Doppler shift of 0.
2 Process some large number of bits.
3 Compute error statistics.
4 Repeat these steps many times to produce a distribution of the performance metric.

The example below illustrates the quasi-static channel modeling approach.

M = 4; % DQPSK modulation order

hMod = comm.DQPSKModulator; % Create a DPSK modulator

hDemod = comm.DQPSKDemodulator; % Create a DPSK demodulator

numBits = 10000; % Each trial uses 10000 bits.

numTrials = 20; % Number of BER computations

% Note: In reality, numTrials would be a large number

% to get an accurate estimate of outage probabilities

% or packet error rate.

% Use 20 here just to make the example run more quickly.

12-43

12 Channel Modeling and RF Impairments

% Create Rician channel object.

chan = ricianchan; % Static Rician channel

chan.KFactor = 3; % Rician K-factor

% Because chan.ResetBeforeFiltering is 1 by default,

% FILTER resets the channel in each trial below.

% Create an AWGNChannel and ErrorRate calculator System object

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)');

hChan.SNR = 20;

hErrorCalc = comm.ErrorRate;

serVec = zeros(3,numTrials);

% Compute error rate once for each independent trial.

for n = 1:numTrials

 reset(hErrorCalc)

 tx = randi([0 M-1],numBits,1); % Generate random bit stream

 dpskSig = step(hMod, tx); % DPSK modulate signal

 fadedSig = filter(chan, dpskSig); % Apply channel effects

 rxSig = step(hChan,fadedSig); % Add Gaussian noise.

 rx = step(hDemod,rxSig); % Demodulate.

 % Compute number of symbol errors.

 % Ignore first sample because of DPSK initial condition.

 serVec(:,n) = step(hErrorCalc,tx(2:end),rx(2:end));

end

nErrors = serVec(2,:)

per = mean(nErrors > 0) % Proportion of packets that had errors

While the example runs, the Command Window displays the growing list of symbol
error counts in the vector nErrors. It also displays the packet error rate at the end. The
sample output below shows a final value of nErrors and omits intermediate values.
Your results might vary because of randomness in the example.

nErrors =

 Columns 1 through 9

 0 0 0 0 0 0 0 0 0

 Columns 10 through 18

 0 0 0 0 7 0 0 0 0

12-44

 Fading Channels

 Columns 19 through 20

 0 216

per =

 0.1000

More About the Quasi-Static Technique

As an example to show how the quasi-static channel modeling approach can save
computation, consider a wireless local area network (LAN) in which the carrier frequency
is 2.4 GHz, mobile speed is 1 m/s, and bit rate is 10 Mb/s. The following expression shows
that the channel changes insignificantly over 12,500 bits:

1

100 100
10

3 10

10

8

f

c

vfd

 s 10 Mb/s s Mb/s

m/s

Ê

Ë
Á

ˆ

¯
˜ () =

Ê

Ë
Á

ˆ

¯
˜()

= ¥
00 1 2 4

10

500

()(.)

,

 m/s GHz
 Mb/s

12 b

()

=

A traditional Monte Carlo approach for computing the error rate of this system would
entail simulating thousands of times the number of bits shown above, perhaps tens of
millions of bits. By contrast, a quasi-static channel modeling approach would simulate
a few packets at each of about 100 locations to arrive at a spatial distribution of error
rates. From this distribution one could determine, for example, how reliable the
communication link is for a random location within the indoor space. If each simulation
contains 5,000 bits, 100 simulations would process half a million bits in total. This is
substantially fewer bits compared to the traditional Monte Carlo approach.

Additional Examples Using Fading Channels

The following models include the use of fading channels:

• Rayleigh Fading Channel, which illustrates the channel's effect on a QPSK modulated
signal

• IEEE 802.11a WLAN Physical Layer
• Defense Communications: US MIL-STD-188-110B

12-45

12 Channel Modeling and RF Impairments

• WCDMA End-to-End Physical Layer

12-46

 MIMO Channel

MIMO Channel

The Communications System Toolbox software provides a Multiple Input Multiple
Output (MIMO) Multipath Fading Channel System object. Multipath MIMO fading
channels allow for design of communication systems with multiple antenna elements at
the transmitter and receiver.

For more information, see the comm.MIMOChannel Help page.

The product also includes an LTE MIMO Multipath Fading Channel System object. This
object allows for design of communication systems with multiple antenna elements at the
transmitter and receiver using the 3GPP Long Term Evolution (LTE) standard.

For more information, see the comm.LTEMIMOChannel Help page.

The following demos illustrate MIMO fading channel techniques using MATLAB System
objects:

• Introduction to MIMO Systems
• IEEE 802.11n Channel Models
• IEEE 802.16 Channel Models

12-47

12 Channel Modeling and RF Impairments

RF Impairments

In this section...

“Illustrate RF Impairments That Distort a Signal” on page 12-48
“Phase/Frequency Offsets and Phase Noise” on page 12-52
“Receiver Thermal Noise and Free Space Path Loss” on page 12-52
“Nonlinearity and I/Q Imbalance” on page 12-53
“Apply Nonlinear Distortion to Input Signal” on page 12-53
“Simulate RF Impairments to a DQPSK Signal” on page 12-54
“View Phase Noise Effects on Signal Spectrum” on page 12-57
“Selected Bibliography for Channel Modeling” on page 12-60

Illustrate RF Impairments That Distort a Signal

This section presents scatter plots that illustrate how blocks in the RF Impairments
library distort a signal modulated by 16-ary quadrature amplitude modulation (QAM).
The usual 16-ary QAM constellation without distortion is shown in the following figure.

As the scatter plots show, the first two blocks distort both the magnitude and angle of
points in the constellation, while the last two alter just the angle.

12-48

 RF Impairments

You can create these scatter plots with models similar to the following, which produces
the scatter plot for the Memoryless Nonlinearity block:

16-ary QAM Model

The model uses the Rectangular QAM Modulator Baseband block, from AM in the Digital
Baseband Modulation sublibrary of the Modulation library. You control the power of the
block's output signal with the Normalization method parameter. To open this model,
enter doc_16qam_plot at the MATLAB command line.

I/Q Imbalance Block

You can generate the next scatter plot by replacing the Memoryless Nonlinearity block
in the 16-ary QAM Model with the I/Q Imbalance block. Set the block's I/Q amplitude
imbalance (dB) parameter to 10 and the I/Q phase imbalance (deg) parameter to 30.

12-49

12 Channel Modeling and RF Impairments

For more examples of scatter plots produced using this block, see the reference page for
the I/Q Imbalance block.

Phase/Frequency Offset Block

You can generate the next scatter plot by replacing the Memoryless Nonlinearity
block in the 16-ary QAM Model with the Phase/Frequency Offset block. Set the block's
Frequency offset (Hz) parameter to 0 and the Phase offset (deg) parameter to 70.

12-50

 RF Impairments

The Frequency offset (Hz) parameter adds a constant to the phase of the signal. The
scatter plot corresponds to the standard constellation rotated by a fixed angle of 70
degrees.

The Frequency offset (Hz) parameter determines the rate of change of the signal's
phase. In this example, Frequency offset (Hz) is set to 0, so the scatter plot always
falls on the grid shown in the preceding figure. If you set Frequency offset (Hz) to a
positive number, the points on the scatter plot fall on a rotating grid, corresponding to
the standard constellation, which revolves at a constant rate in the counterclockwise
direction. For an example, see the reference page for the Phase/Frequency Offset
block.

Phase Noise Block

You can generate the next scatter plot by replacing the Memoryless Nonlinearity block in
the 16-ary QAM Model with the Phase Noise block. Set the Phase noise level (dBc/Hz)
parameter to -60 and the Frequency offset (Hz) parameter to 100.

12-51

12 Channel Modeling and RF Impairments

The phase noise adds a random error to the signal's phase, so that the points in the
scatter plot are spread in a radial pattern around the constellation points.

Phase/Frequency Offsets and Phase Noise

The RF Impairments library contains two blocks that simulate phase/frequency offsets
and phase noise:

• The Phase/Frequency Offset block applies phase and frequency offsets to a signal.
• The Phase Noise block applies phase noise to a signal.

The Phase/Frequency Offset block and the Phase Noise block alter only the phase and
frequency of the signal.

Receiver Thermal Noise and Free Space Path Loss

The RF Impairments Library contains two blocks that simulate signal impairments due
to thermal noise and signal attenuation due to the distance from the transmitter to the
receiver:

• The Receiver Thermal Noise block simulates the effects of thermal noise on a complex
baseband signal.

12-52

 RF Impairments

• The Free Space Path Loss block simulates the loss of signal power due to the distance
from the transmitter and signal frequency.

Nonlinearity and I/Q Imbalance

The following two blocks model signal impairments due to nonlinear devices or
imbalances between the in-phase and quadrature components of a modulated signal:

• The Memoryless Nonlinearity block models the AM-to-AM and AM-to-PM distortion
in nonlinear amplifiers.

• The I/Q Imbalance block models imbalances between the in-phase and quadrature
components of a signal caused by differences in the physical channels carrying the
separate components.

These blocks distort both the phase and amplitude of the signal.

Apply Nonlinear Distortion to Input Signal

The Memoryless Nonlinearity block applies a nonlinear distortion to the input signal.
This distortion models the AM-to-AM and AM-to-PM conversions in nonlinear amplifiers.
The block provides several methods, which you specify by the Method parameter, for
modeling the nonlinear characteristics of amplifiers:

• Cubic polynomial
• Hyperbolic tangent
• Saleh model
• Ghorbani model
• Rapp model

In the model shown in the preceding figure, the Method parameter is set to Ghorbani
model. The following figure shows the scatter plot the model generates.

12-53

12 Channel Modeling and RF Impairments

For another example of a scatter plot produced using this block, see the reference page
for the Memoryless Nonlinearity block.

Simulate RF Impairments to a DQPSK Signal

The model shown in the following figure simulates RF impairments to a signal
modulated by differential quaternary phase shift keying (DQPSK).

12-54

 RF Impairments

You can open this model by typing doc_receiverimpairments_dqpsk at the MATLAB
command line.

Overview of the Model

The model does the following:

• Modulates a random signal using DQPSK modulation.
• Applies impairments to the signal using the blocks from the RF Impairments library.

12-55

12 Channel Modeling and RF Impairments

• Forks the signal into two paths, and processes one path with an automatic gain
control (AGC) to compensate for the free space path loss and the I/Q imbalance.

• Displays the trajectory of the signal with AGC and the trajectory of the signal without
AGC.

• Demodulates both signals and calculates their error rates.

You can see the effect of the automatic gain by comparing the trajectories of the signals
with and without AGC, as shown in the following figure.

Signal With (Left) and Without (Right) AGC

The trajectory of the signal with AGC more closely matches the undistorted trajectory
for DQPSK, shown in the following figure, than does than the signal without AGC.
Consequently, the error rate for the signal with AGC is much lower than the error rate
for the signal without AGC.

12-56

 RF Impairments

In this example, the error rate for the demodulated signal without AGC is primarily
caused by free space path loss and I/Q imbalance. The QPSK modulation minimizes the
effects of the other impairments.

View Phase Noise Effects on Signal Spectrum

This example shows the effects spectral and phase noise have on a 128 Hz carrier
frequency.

1 Type doc_phasenoise at the MATLAB command line to open the model.
2 Click Simulation > Run.

The model generates four figure windows. Notice the position of the 128 Hertz
signal, and the respective noise floor on the different plots. Take note of the numeric
value that the RMS Phase Noise block displays.

3 In the Noisy dBw figure window, click Zoom In.

12-57

12 Channel Modeling and RF Impairments

4 Move the mouse pointer to the figure window and then click-and-drag to zoom in on
the 128 Hz signal.

12-58

 RF Impairments

5 In the Simulink model, double-click the Phase Noise block mask.
6 Change the value of the Phase noise level block parameter to [-40 -100]
7 Change the value of the Frequency offset block parameter to [100 400]
8 Click OK.
9 Click Run.
10 Observe how changing the phase noise and frequency offset vectors effects the 128

Hz signal.

12-59

12 Channel Modeling and RF Impairments

As you add noise, the spectrum shape changes. With more noise, 128 Hz signal
becomes less distinct, as the side lobes increase in amplitude. Similarly, as you add
phase noise, the measured value in the RMS Phase Noise block also increases.

Selected Bibliography for Channel Modeling

[1] Simon, M. K., and Alouini, M. S., Digital Communication over Fading Channels – A
Unified Approach to Performance Analysis, 1st Ed., Wiley, 2000.

[2] 3rd Generation Partnership Project, Technical Specification Group Radio Access
Network, Evolved Universal Terrestrial Radio Access (E-UTRA), Base Station
(BS) radio transmission and reception, Release 10, 3GPP TS 36.104, v10.0.0,
2010-09.

[3] 3rd Generation Partnership Project, Technical Specification Group Radio Access
Network, Evolved Universal Terrestrial Radio Access (E-UTRA), User Equipment
(UE) radio transmission and reception, Release 10, 3GPP TS 36.101, v10.0.0,
2010-10.

12-60

13

Measurements

• “Bit Error Rate (BER)” on page 13-2
• “Error Vector Magnitude (EVM)” on page 13-123
• “Modulation Error Ratio (MER)” on page 13-128
• “Adjacent Channel Power Ratio (ACPR)” on page 13-129
• “Complementary Cumulative Distribution Function CCDF” on page 13-137
• “Selected Bibliography for Measurements” on page 13-138

13 Measurements

Bit Error Rate (BER)

In this section...

“Theoretical Results” on page 13-2
“Performance Results via Simulation” on page 13-24
“Performance Results via the Semianalytic Technique” on page 13-27
“Theoretical Performance Results” on page 13-30
“Error Rate Plots” on page 13-34
“BERTool” on page 13-39
“Error Rate Test Console” on page 13-88

Theoretical Results

Common Notation

The following notation is used throughout this Appendix:

Quantity or Operation Notation

Size of modulation constellation M

Number of bits per symbol k M= log2

Energy per bit-to-noise power-spectral-
density ratio

E

N

b

0

Energy per symbol-to-noise power-spectral-
density ratio

E

N
k

E

N

s b

0 0

=

Bit error rate (BER) Pb

Symbol error rate (SER) P
s

Real part Re ◊[]

Largest integer smaller than ◊ÍÎ ˙̊

13-2

 Bit Error Rate (BER)

13-3

13 Measurements

The following mathematical functions are used:

Function Mathematical Expression

Q function
Q x t dt

x

() exp(/)= -
•

Ú
1

2
22

p

Marcum Q function
Q a b t

t a
I at dt

b

(,) exp ()= -
+Ê

Ë
ÁÁ

ˆ

¯
˜̃

•

Ú
2 2

0
2

Modified Bessel function of the first kind of
order n I z

z

k k

k

k

n

u

n
()

/

! ()
=

()
+ +

+

=

•

Â
2

1

2

0
G

where

G()x e t dt
t x= - -

•

Ú 1

0

is the gamma function.
Confluent hypergeometric function

1 1
0

F a c x
a

c

x

k

k

k

k

k

(, ;)
()

() !
=

=

•

Â

where the Pochhammer symbol,
()l k , is defined as ()l 0 1= ,
() ()() ()l l l l lk k= + + + -1 2 1L .

13-4

 Bit Error Rate (BER)

The following acronyms are used:

Acronym Definition

M-PSK M-ary phase-shift keying
DE-M-PSK Differentially encoded M-ary phase-shift

keying
BPSK Binary phase-shift keying
DE-BPSK Differentially encoded binary phase-shift

keying
QPSK Quaternary phase-shift keying
DE-QPSK Differentially encoded quaternary phase-

shift keying
OQPSK Offset quaternary phase-shift keying
DE-OQPSK Differentially encoded offset quaternary

phase-shift keying
M-DPSK M-ary differential phase-shift keying
M-PAM M-ary pulse amplitude modulation
M-QAM M-ary quadrature amplitude modulation
M-FSK M-ary frequency-shift keying
MSK Minimum shift keying
M-CPFSK M-ary continuous-phase frequency-shift

keying

Analytical Expressions Used in berawgn

• “M-PSK” on page 13-6
• “DE-M-PSK” on page 13-7
• “OQPSK” on page 13-7
• “DE-OQPSK” on page 13-7
• “M-DPSK” on page 13-8
• “M-PAM” on page 13-8
• “M-QAM” on page 13-9

13-5

13 Measurements

• “Orthogonal M-FSK with Coherent Detection” on page 13-10
• “Nonorthogonal 2-FSK with Coherent Detection” on page 13-10
• “Orthogonal M-FSK with Noncoherent Detection” on page 13-11
• “Nonorthogonal 2-FSK with Noncoherent Detection” on page 13-12
• “Precoded MSK with Coherent Detection” on page 13-12
• “Differentially Encoded MSK with Coherent Detection” on page 13-12
• “MSK with Noncoherent Detection (Optimum Block-by-Block)” on page 13-12
• “CPFSK Coherent Detection (Optimum Block-by-Block)” on page 13-13

M-PSK

From equation 8.22 in [2]

P
kE

N

M
ds

b

M M

= -
[]Ê

Ë
Á
Á

ˆ

¯
˜
˜

-

Ú
1

0

2

2
0

1

p

p

q
q

p
exp

sin /

sin

() /

The following expression is very close, but not strictly equal, to the exact BER (from [4]
and equation 8.29 from [2]):

P
k

w Pb i i

i

M

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â1

1

2

()
’

/

where w w w
i i M i

’
= +

-
, w w

M M/
’

/2 2= , w
i is the Hamming weight of bits assigned to

symbol i, and

P
kE

N

i M
di

b

i M

= -
-[]Ê

Ë
Á
Á

ˆ

¯
˜
˜

- -
1

2

2 1

0

2

2
0

1 2 1

p

p

q
q

p

exp
sin () /

sin

(()/))

(() /

exp
sin () /

sin

Ú

- -
+[]Ê

Ë
Á
Á

ˆ

¯
˜
˜

- +
1

2

2 1

0

2

2
0

1 2 1

p

p

q
q

p
kE

N

i M
db

i MM)

Ú

Special case of M = 2 , e.g., BPSK (equation 5.2-57 from [1]):

13-6

 Bit Error Rate (BER)

P P Q
E

N
s b

b= =
Ê

Ë
ÁÁ

ˆ

¯
˜̃

2

0

Special case of M = 4 , e.g., QPSK (equations 5.2-59 and 5.2-62 from [1]):

P Q
E

N
Q

E

N

P Q
E

N

s
b b

b
b

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃ -

Ê

Ë
ÁÁ

ˆ

¯
˜̃

È

Î
Í
Í

˘

˚
˙
˙

=
Ê

Ë
ÁÁ

ˆ

2
2

1
1

2

2

2

0 0

0 ¯̄
˜̃

DE-M-PSK

M = 2 , e.g., DE-BPSK (equation 8.36 from [2]):

P P Q
E

N
Q

E

N
s b

b b= =
Ê

Ë
ÁÁ

ˆ

¯
˜̃ -

Ê

Ë
ÁÁ

ˆ

¯
˜̃2

2
2

2

0

2

0

M = 4 , e.g., DE-QPSK (equation 8.38 from [2]):

P Q
E

N
Q

E

N
Q

E

N
Q

E
s

b b b=
Ê

Ë
ÁÁ

ˆ

¯
˜̃ -

Ê

Ë
ÁÁ

ˆ

¯
˜̃ +

Ê

Ë
ÁÁ

ˆ

¯
˜̃ -4

2
8

2
8

2
4

2

0

2

0

3

0

4 bb

N0

Ê

Ë
ÁÁ

ˆ

¯
˜̃

From equation 5 in [3]:

P Q
E

N
Q

E

N
b

b b=
Ê

Ë
ÁÁ

ˆ

¯
˜̃ -

Ê

Ë
ÁÁ

ˆ

¯
˜̃

È

Î
Í
Í

˘

˚
˙
˙

2
2

1
2

0 0

OQPSK

Same BER/SER as QPSK [2].

DE-OQPSK

Same BER/SER as DE-QPSK [3].

13-7

13 Measurements

M-DPSK

From equation 8.84 in [2]:

P
M kE N M

M
ds

b=
- -()

-

sin(/) exp (/)(cos(/) cos)

cos(/) cos

p

p

p q

p q2

1

1

0 qq
p

p

-
Ú
/

/

2

2

The following expression is very close, but not strictly equal, to the exact BER [4]:

P
k

w Ab i i

i

M

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â1

1

2

()
’

/

where w w w
i i M i

’
= +

-
, w w

M M/
’

/2 2= , w
i is the Hamming weight of bits assigned to

symbol i, and

A F i
M

F i
M

F
kE N

i

b

= +()Ê
ËÁ

ˆ
¯̃

- -()Ê
ËÁ

ˆ
¯̃

= -
-

2 1 2 1

4

10

p p

y
y

p
()

sin exp / (--()
-

-
Ú

cos cos)

cos cos
/

/ y

y
p

p
t

t
dt

1
2

2

Special case of M = 2 (equation 8.85 from [2]):

P
E

N
b

b= -
Ê

Ë
Á

ˆ

¯
˜

1

2 0

exp

M-PAM

From equations 8.3 and 8.7 in [2], and equation 5.2-46 in [1]:

P
M

M
Q

M

kE

N
s

b= -Ê
ËÁ

ˆ
¯̃ -

Ê

Ë
ÁÁ

ˆ

¯
˜̃2

1 6

1
2

0

From [5]:

13-8

 Bit Error Rate (BER)

P
M M

i

M
Q

b

i

M k
k

k

= ¥

- - +
Í

Î
Í
Í

˙

˚
˙
˙

Ê

Ë
Á
Á

ˆ

¯
˜
˜

-Í

Î
Í

˙

˚
˙

-
-

2

1 2
2 1

2

2

2

1
1

1

log

() (()
log()lo

2 1
6

1

2
2

00

1 2 1

1

i
M

M

E

N

b

i

M

k

k

+
-

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ô=

- -

=

-

Â
gg2 M

Â

M-QAM

For square M-QAM, k M= log2 is even (equation 8.10 from [2], and equations 5.2-78 and
5.2-79 from [1]):

P
M

M
Q

M

kE

N

M

M
Q

M

kE

N
s

b b= -
-

Ê

Ë
ÁÁ

ˆ

¯
˜̃ - -Ê

Ë
ÁÁ

ˆ

¯
˜̃

-

Ê

Ë
ÁÁ

ˆ

¯
4

1 3

1
4

1 3

10

2

2

0

˜̃̃

From [5]:

P
M M

i

M
Q

b

i

M k
k

k

=

¥ - - +
Í

Î
Í
Í

˙

˚
˙
˙

Ê

Ë
Á
Á

ˆ

¯
˜
˜

-Í

Î
Í

˙

˚
˙

-
-

2

1 2
2 1

2

2

2

1
1

1

log

() (()
log

()

()

2 1
6

2 1

2

00

1 2 1

1

i
M

M

E

N

b

i

M

k

k

+
-

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ô=

- -

=

-

Â
llog 2 M

Â

For rectangular (non-square) M-QAM, k M= log2 is odd, M I J= ¥ , I

k

=

-

2

1

2 , and

J

k

=

+

2

1

2 :

P
IJ I J

M

Q
IJ

I J

E

N M
IJ I J

s

b

=
- -

¥
+ -

Ê

Ë
ÁÁ

ˆ

¯
˜̃ - + - -

4 2 2

6

2

4
12

2 2
0

log ()

()
()QQ

IJ

I J

E

N

b2 2
2 2

0

6

2

log ()

()+ -

Ê

Ë
ÁÁ

ˆ

¯
˜̃

From [5]:

13-9

13 Measurements

P
IJ

P k P lb I

k

I

J

l

J

= +
Ê

Ë
Á
Á

ˆ

¯
˜
˜

= =
Â Â1

2 1 1

2 2

log ()
() ()

log log

where

P k
I

i

I
Q iI

i

I k
k

k

() () (= - - +
Í

Î
Í
Í

˙

˚
˙
˙

Ê

Ë
Á
Á

ˆ

¯
˜
˜

-Í

Î
Í

˙

˚
˙

-
-2

1 2
2 1

2
2

2

1
1

1

++
+ -

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ô=

- --

Â 1
6

2

2
2 2

00

1 2 1

)
log ()() IJ

I J

E

N

b

i

Ik

and

P k
J

j

J
Q jJ

j

J l
l

l

() () (= - - +
Í

Î
Í
Í

˙

˚
˙
˙

Ê

Ë
Á
Á

ˆ

¯
˜
˜

-Í

Î
Í

˙

˚
˙

-
-2

1 2
2 1

2
2

2

1
1

1

++
+ -

Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ô=

- --

Â 1
6

2

2
2 2

00

1 2 1

)
log ()() IJ

I J

E

N

b

j

Jl

Orthogonal M-FSK with Coherent Detection

From equation 8.40 in [2] and equation 5.2-21 in [1]:

P Q q
kE

N

q
dqs

b

M

= - - -
Ê

Ë
ÁÁ

ˆ

¯
˜̃

È

Î
Í
Í

˘

˚
˙
˙

-
Ê

Ë
ÁÁ

ˆ

¯
˜̃

-

-•

•

Ú1
2 1

2 20

1
2

p
exp

PP Pb

k

k s=
-

-2

2 1

1

Nonorthogonal 2-FSK with Coherent Detection

For M = 2 (from equation 5.2-21 in [1] and equation 8.44 in [2]):

P P Q
E

N
s b

b= =
- []Ê

Ë
Á
Á

ˆ

¯
˜
˜

(Re)1

0

r

r is the complex correlation coefficient:

13-10

 Bit Error Rate (BER)

r = Ú
1

2
1 2

0
E

s t s t dt

b

T
b

% %() ()
*

where %s t1() and %s t2() are complex lowpass signals, and

E s t dt s t dtb

T T
b b

= =Ú Ú
1

2

1

2
1

2

0

2
2

0

% %() ()

For example:

% %s t
E

T
e s t

E

T
eb

b

j f t b

b

j f t
1

2
2

22 2
1 2() , ()= =

p p

r p p p= =- -Ú
1

2

2 2 12 2

0

2

0

1 2 1 2

E

E

T
e

E

T
e dt

T
e dt

b

b

b

j f t b

b

j f t
T

b

j f f t
Tb b

()ÚÚ

=
sin()p

p
pD

D
DfT

fT
eb

b

j ft

where Df f f= -
1 2 .

 Re Re
sin() sin()

cosr
p

p
p

p
p[] =

È

Î
Í

˘

˚
˙ =

D
D

D
D

DfT

fT
e

fT

fT

b

b

j ft b

b

(()
sin()

(sin() / ())

p
p

p

p p

D
D

D

D D

fT
fT

fT

P Q
E fT fT

N

b
b

b

b
b b b

=

fi =
-

2

2

1 2 2

00

Ê

Ë
ÁÁ

ˆ

¯
˜̃

(from equation 8.44 in [2], where h fTb= D)

Orthogonal M-FSK with Noncoherent Detection

From equation 5.4-46 in [1] and equation 8.66 in [2]:

13-11

13 Measurements

P
M

m m

m

m

kE

N

P
M

M

s
m b

m

M

b

= -
-Ê

Ë
Á

ˆ

¯
˜ +

-
+

È

Î
Í

˘

˚
˙

=
-

+

=

-

Â () exp1
1 1

1 1

1

2

1

01

1

11
Ps

Nonorthogonal 2-FSK with Noncoherent Detection

For M = 2 (from equation 5.4-53 in [1] and equation 8.69 in [2]):

P P Q a b
a b

I abs b= = - - +Ê
ËÁ

ˆ
¯̃

(,) exp ()
1

2 2
0

where

a
E

N
b

E

N

b b
= - - = + -

2
1 1

2
1 1

0

2

0

2
(), ()r r

Precoded MSK with Coherent Detection

Same BER/SER as BPSK.

Differentially Encoded MSK with Coherent Detection

Same BER/SER as DE-BPSK.

MSK with Noncoherent Detection (Optimum Block-by-Block)

Upper bound (from equations 10.166 and 10.164 in [6]):

P P

Q b a Q a b Q b a Q a b

s b=

£ - () + ()È
Î

˘
˚

+ - () + ()È
Î

˘
˚

+
1

2
1

1

4
11 1 1 1 4 4 4 4, , , ,

11

2
0e

E

N

b-

where

13-12

 Bit Error Rate (BER)

a
E

N
b

E

N

a
E

N

b b

b

1
0

2

1
0

2

4
0

1
3 4

4
1

3 4

4

1

= -
-Ê

Ë

Á
Á

ˆ

¯

˜
˜

= +
-Ê

Ë

Á
Á

ˆ

¯

˜
˜

= -

/
,

/p p

11 4 1 1 42
4

0

2-Ê
ËÁ

ˆ
¯̃

= + -Ê
ËÁ

ˆ
¯̃

/ , /p pb
E

N

b

CPFSK Coherent Detection (Optimum Block-by-Block)

Lower bound (from equation 5.3-17 in [1]):

P K Q
E

N
s

b>
Ê

Ë
ÁÁ

ˆ

¯
˜̃d d

min
min

0

2

Upper bound:

dmin min ()
2

1 1
2 1 2> -(){ }

£ £ -i M

i ihsinc

where h is the modulation index, and Kd
min

 is the number of paths having the minimum
distance.

P
P

k
b

s
@

Analytical Expressions Used in berfading

• “Notation” on page 13-14
• “M-PSK with MRC” on page 13-15
• “DE-M-PSK with MRC” on page 13-16
• “M-PAM with MRC” on page 13-16
• “M-QAM with MRC” on page 13-17
• “M-DPSK with Postdetection EGC” on page 13-18
• “Orthogonal 2-FSK, Coherent Detection with MRC” on page 13-19

13-13

13 Measurements

• “Nonorthogonal 2-FSK, Coherent Detection with MRC” on page 13-19
• “Orthogonal M-FSK, Noncoherent Detection with EGC” on page 13-19
• “Nonorthogonal 2-FSK, Noncoherent Detection with No Diversity” on page 13-20

Notation

The following notation is used for the expressions found in berfading.

Value Notation

Power of the fading amplitude r
W = È

Î
˘
˚

E r
2 , where E ◊[] denotes statistical

expectation
Number of diversity branches L

SNR per symbol per branch
gl l

s
l

bE

N
L

kE

N
L=

Ê

Ë
Á

ˆ

¯
˜ =

Ê

Ë
Á

ˆ

¯
˜W W

0 0

/ /

For identically-distributed diversity
branches:

g =
Ê

Ë
Á

ˆ

¯
˜W

kE

N
Lb

0

/

Moment generating functions for each
diversity branch

Rayleigh fading:

M s
sl

l

g
g

() =
-

1

1

Rician fading:

M s
K

K s
e

l

l

l

l

Ks

K s

g

g

g

g
() =

+
+ -

+ -

È

Î
Í

˘

˚
˙1

1

1()

where K is the ratio of energy in the
specular component to the energy in the
diffuse component (linear scale).

13-14

 Bit Error Rate (BER)

Value Notation

For identically-distributed diversity
branches:
M s M s

l
g g() = () for all l.

The following acronyms are used:

Acronym Definition

MRC maximal-ratio combining
EGC equal-gain combining

M-PSK with MRC

From equation 9.15 in [2]:

P M
M

ds

l

LM M

l
= -

Ê

Ë
ÁÁ

ˆ

¯
˜̃

=

-

’Ú
1

2

2
10

1

p
p

q
qg

p
sin (/)

sin

() /

From [4] and [2]:

P
k

w Pb i i

i

M

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â1

1

2

()
’

/

where w w w
i i M i

’
= +

-
, w w

M M/
’

/2 2= , w
i is the Hamming weight of bits assigned to

symbol i, and

P M
i

M
di

l

Li M

l
= -

-Ê

Ë
Á

ˆ

¯
˜

-

=

- -

’Ú
1

2

1 2 1

1

2

2

10

1 2 1

p q

p
qg

p

sin
sin

()
(()/)

22

1 2 1

2

2

10

1 2 1

p q

p qg

p

M
i

M
d

l

l

Li M

- +Ê

Ë
Á

ˆ

¯
˜

=

- +

’Ú
sin

sin
()

(()/)

13-15

13 Measurements

For the special case of Rayleigh fading with M = 2 (from equations C-18, C-21, and Table
C-1 in [6]):

P
i

i
b

i

L
i

= -
Ê

Ë
Á

ˆ

¯
˜

-Ê

Ë
ÁÁ

ˆ

¯
˜̃

È

Î

Í
Í
Í

˘

˚

˙
˙
˙=

-

Â1

2
1

2 1

4
0

1 2

m
m

where

m
g

g
=

+1

If L = 1 :

Pb = -
+

È

Î
Í
Í

˘

˚
˙
˙

1

2
1

1

g

g

DE-M-PSK with MRC

For M = 2 (from equations 8.37 and 9.8-9.11 in [2]):

P P M d Ms b

l

L

l
l l

= = -
Ê

Ë
Á

ˆ

¯
˜ - -

Ê

Ë
Á

ˆ

¯
˜

= =
’Ú

2 1 2 1

2
10

2

2
1

p q
q

p q
g

p

g
sin sin

/ LL

d’Ú q
p

0

4/

M-PAM with MRC

From equation 9.19 in [2]:

P
M

M
M

M
ds

l

L

l
=

-
-

-Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
’Ú

2 1 3 1
2

2
10

2
() / ()

sin

/

p q
qg

p

From [5] and [2]:

13-16

 Bit Error Rate (BER)

P
M M

i

M

b

i

M k
k

k

=

¥ - - +
Í

Î
Í
Í

˙

˚
˙
˙

Ê

Ë
Á
Á

ˆ

¯
˜

-Í

Î
Í

˙

˚
˙

-
-

2

1 2
2 1

2

2

2

1
1

1

p log

()
˜̃

-
+ -Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ô==

’Ú M
i M

d
l

l

L

i

g

p

q
q

() / ()

sin

/
2 1 3 12 2

2
10

2

00

1 2 1

1

2 ()log - -

=

-

ÂÂ
k

M

k

M

M-QAM with MRC

For square M-QAM, k M= log2 is even (equation 9.21 in [2]):

P
M

M
M

ds

l

L

l
= -

Ê

Ë
Á

ˆ

¯
˜ -

-Ê

Ë
Á

ˆ

¯
˜

- -

=
’Ú

4
1

1 3 2 1

4
1

1

2
10

2

p q
q

p

g

p
/ (())

sin

/

MM
M

M
d

l

l

LÊ

Ë
Á

ˆ

¯
˜ - -Ê

Ë
Á

ˆ

¯
˜

=
’Ú

2

2
10

4
3 2 1

g

p

q
q/ (())

sin

/

From [5] and [2]:

P
M M

i

M

b

i

M k
k

k

=

¥ - - +
Í

Î
Í
Í

˙

˚
˙
˙

Ê

Ë
Á
Á

ˆ

¯
˜

-Í

Î
Í

˙

˚
˙

-
-

2

1 2
2 1

2

2

2

1
1

1

p log

()
˜̃

-
+ -Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ô=

’Ú M
i M

d
l

l

L

g

p

q
q

() / (())

sin

/
2 1 3 2 12

2
10

2

ii

M

k

M k

=

- -

=

-

ÂÂ
0

1 2 1

1

2 ()log

For rectangular (nonsquare) M-QAM, k M= log2 is odd, M I J= ¥ , I

k

=

-

2

1

2 , J

k

=

+

2

1

2 ,

gl l
b

IJ
E

N
= W log ()2

0

, and

P
IJ I J

M
M

I J
d

M

s

l

L

l
=

- -
-

+ -Ê

Ë
ÁÁ

ˆ

¯
˜̃

-

=
’Ú

4 2 2 3 2

4

2 2

2
10

2

p q
q

p

g

p
/ ()

sin

/

(()
/ ()

sin

/

1
3 2

2 2

2
10

4

+ - - - + -Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
’ÚIJ I J M

I J
d

l

l

L

g

p

q
q

13-17

13 Measurements

From [5] and [2]:

P
IJ

P k P l

P k
I

b I

k

I

J

l

J

I

= +
Ê

Ë
Á
Á

ˆ

¯
˜
˜

=

= =
Â Â1

2

2 1 1

2 2

log ()
() ()

()

log log

p
(()

()- - +
Í

Î
Í
Í

˙

˚
˙
˙

Ê

Ë
Á
Á

ˆ

¯
˜
˜

- +
-Í

Î
Í

˙

˚
˙

-
-

1 2
2 1

2

2 1
2

1
1 2

1i

I k
k

k

l

i

I
M

i
g

33 2
2 2

2
10

2

0

1 2
/ ()

sin

/()
I J

d

l

L

i

Ik

+ -Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
Ô==

-

’Ú
-

q
q

p--

Í

Î
Í

˙

˚
˙

-
-

Â

= - - +
Í

Î
Í
Í

˙

˚
˙
˙

Ê

Ë
Á
Á

ˆ

¯
˜

-

1

2

1
12

1 2
2 1

2

1

P k
J

j

J
J

j

J l
l

l

() ()
p ˜̃

-
+ + -Ê

Ë
ÁÁ

ˆ

¯
˜̃

Ï

Ì
Ô

Ó
Ô

¸

˝
Ô

˛
=
’Ú M

j I J
d

l

l

L

g

p

q
q

() / ()

sin

/
2 1 3 22 2 2

2
10

2

ÔÔ=

- --

Â
j

J
l

0

1 2 1()

M-DPSK with Postdetection EGC

From equation 8.165 in [2]:

P
M

M
M M ds

l

L

l
=

-[]
- -[]()

=
’sin(/)

cos(/) cos
cos(/)cos

p
p p q

p qg
2

1

1
1

1

qq
p

p

-
Ú
/

/

2

2

From [4] and [2]:

P
k

w Ab i i

i

M

=
Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
Â1

1

2

()
’

/

where w w w
i i M i

’
= +

-
, w w

M M/
’

/2 2= , w
i is the Hamming weight of bits assigned to

symbol i, and

A F i
M

F i
M

F
t

i = +()Ê
ËÁ

ˆ
¯̃

- -()Ê
ËÁ

ˆ
¯̃

= -
-(

2 1 2 1

4

1

1

p p

y
y

p y
()

sin

cos cos))
- -()()

=-
’Ú M t dt

l

l

L

g
p

p

y1

12

2

cos cos

/

/

For the special case of Rayleigh fading with M = 2 , and L = 1 (equation 8.173 from [2]):

13-18

 Bit Error Rate (BER)

Pb =
+

1

2 1()g

Orthogonal 2-FSK, Coherent Detection with MRC

From equation 9.11 in [2]:

P P M ds b

l

L

l
= = -

Ê

Ë
Á

ˆ

¯
˜

=
’Ú

1 1 2

2
10

2

p q
qg

p
/

sin

/

For the special case of Rayleigh fading (equations 14.4-15 and 14.4-21 in [1]):

P P
L k

k
s b L

L

k
k

L

= = -
+

Ê

Ë
ÁÁ

ˆ

¯
˜̃

- +Ê

Ë
Á

ˆ

¯
˜ +

+

Ê

Ë
ÁÁ

ˆ

¯=

-

Â1

2

1
2

1 1

2

1
2

0

1g
g

g
g

˜̃̃
k

Nonorthogonal 2-FSK, Coherent Detection with MRC

Equations 9.11 and 8.44 in [2]:

P P M ds b

l

L

l
= = -

- []Ê

Ë
ÁÁ

ˆ

¯
˜̃

=
’Ú

1 1 2

2
10

2

p

r

q
qg

p
(Re) /

sin

/

For the special case of Rayleigh fading with L = 1 (equation 20 in [8] and equation 8.130
in [2]):

P Ps b= = -
-

+ -

È

Î
Í
Í

˘

˚
˙
˙

1

2
1

1

2 1

g r

g r

(Re[])

(Re[])

Orthogonal M-FSK, Noncoherent Detection with EGC

Rayleigh fading (equation 14.4-47 in [1]):

P

L

U e e
U

k
dUs L

L

U

U
k

k

L
M

= -
+() -()

-
Ê

Ë
ÁÁ

ˆ

¯
˜̃-

-
+ -

=

- -

Â1
1

1 1

1
1 1

0

1
1

0 g
g

! !

••

Ú

=
-

P
M

M
Pb s

1

2 1

13-19

13 Measurements

Rician fading (equation 41 in [8]):

P
e

r

M

r

L
s

r LK

r

L
r

M

nr

r r

=
-

+ +()
-Ê

Ë
Á

ˆ

¯
˜

+ - +

=

-

Â ()

()

(/()1

1 1

11 1

1

1 g g

g
b

G ++ +
+ +

È

Î
Í

˘

˚
˙ +

+

=

-

Â n

L r r
F L n L

LK

r

r

r

n

n

r L
r r)

()
, ;

/ ()

(

()

G
1

1

1

0

1

1 1
g

g
g g
11 1

1

2 1

+ +

Ê

Ë
Á

ˆ

¯
˜

=
-

gr

b sP
M

M
P

)

where

g g

b
b

b

r

nr

i r

r L

i n L

n

K

n i
I i

=
+

=
-

=

-
- -

= - -
Â

1

1

1
0 1 1

1

00

()
[,()()]

()
()!

()

bb

b

b

0

1

1

1

1

r

n

r

n

r

=

=

=

/ !

and I ia b[,]() = 1 if a i b£ £ and 0 otherwise.

Nonorthogonal 2-FSK, Noncoherent Detection with No Diversity

From equation 8.163 in [2]:

P P M ds b= =
-

+ +
- + - + +Ê

ËÁ
ˆ
¯̃

1

4

1

1 2

1

4
1 1 1 2

2

2

2 2

p
V

V q V
r V q V qg

sin
()(sin)

--
Ú
p

p

where

V
r

r

=
- -

+ -

1 1

1 1

2

2

Analytical Expressions Used in bercoding and BERTool

• “Common Notation for This Section” on page 13-21
• “Block Coding” on page 13-21
• “Convolutional Coding” on page 13-23

13-20

 Bit Error Rate (BER)

Common Notation for This Section

Description Notation

Energy-per-information bit-to-noise power-
spectral-density ratio gb

bE

N
=

0

Message length K

Code length N

Code rate
R

K

N
c

=

Block Coding

Specific notation for block coding expressions: d
min is the minimum distance of the code.

Soft Decision

BPSK, QPSK, OQPSK, PAM-2, QAM-4, and precoded MSK (equation 8.1-52 in [1]):

P Q R db
K

b c£ - ()
1

2
2 1 2() ming

DE-BPSK, DE-QPSK, DE-OQPSK, and DE-MSK:

P Q R d Q R db
K

b c b c£ - () - ()È
Î

˘
˚

È
ÎÍ

˘
˚̇

1

2
2 1 2 2 1 2() min ming g

BFSK, coherent detection (equations 8.1-50 and 8.1-58 in [1]):

P Q R db
K

b c£ - ()
1

2
2 1() ming

BFSK, noncoherent square-law detection (equations 8.1-65 and 8.1-64 in [1]):

P R d R d
i

b

K

d b c b c

i

£
-

-Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃-

1

2

2 1

2

1

2

1

2

1 2

2 1min

exp
!

min ming g
dd

r
r

d i

i

d
min

minmin -Ê

Ë
Á

ˆ

¯
˜

=

- -

=

-

ÂÂ 1

0

1

0

1

DPSK:

13-21

13 Measurements

P R d R d
i

d

r
b

K

d b c b c

i£
-

-() () -Ê

Ë
Á

ˆ

¯-
1

2

2 1

2

1 2 1

2 1min

exp
!

min min
ming g ˜̃

=

- -

=

-

ÂÂ
r

d i

i

d

0

1

0

1 minmin

Hard Decision

General linear block code (equations 4.3, 4.4 in [9], and 12.136 in [6]):

P
N

m t
N

m
p p

t d

b
m N m

m t

N

£ +
Ê

Ë
Á

ˆ

¯
˜ -()

= -()Í
ÎÍ

˙
˚̇

-

= +
Â1

1

1

2
1

1

()

min

Hamming code (equations 4.11, 4.12 in [9], and 6.72, 6.73 in [7]):

P
N

m
N

m
p p p p pb

m N m

m

N
Nª

Ê

Ë
Á

ˆ

¯
˜ -() = - --

=

-Â1
1 1

2

1
()

(24, 12) extended Golay code (equation 4.17 in [9], and 12.139 in [6]):

P
m

p pb m
m m

m

£
Ê

Ë
Á

ˆ

¯
˜ -() -

=
Â1

24

24
1

24

4

24

b

where b
m

 is the average number of channel symbol errors that remain in corrected N-
tuple when the channel caused m symbol errors (table 4.2 in [9]).

Reed-Solomon code with N Q q
= - = -1 2 1 :

P
N

m
N

m
P Pb

q

q s
m

s
N m

m t

N

ª
-

Ê

Ë
Á

ˆ

¯
˜() -

-
-

= +
Â2

2 1

1
1

1

1

()

for FSK (equations 4.25, 4.27 in [9], 8.1-115, 8.1-116 in [1], 8.7, 8.8 in [7], and 12.142,
12.143 in [6]), and

P
q N

m
N

m
P Pb s

m
s

N m

m t

N

ª
Ê

Ë
Á

ˆ

¯
˜ () - -

= +
Â1 1

1

1

()

13-22

 Bit Error Rate (BER)

otherwise.

If log / log /2 2Q M q k h= = where h is an integer (equation 1 in [10]):

P ss
h

= - -1 1()

where s is the symbol error rate (SER) in an uncoded AWGN channel.

For example, for BPSK, M = 2 and P ss
q

= - -1 1()

Otherwise, P
s is given by table 1 and equation 2 in [10].

Convolutional Coding

Specific notation for convolutional coding expressions: dfree is the free distance of the

code, and a
d is the number of paths of distance d from the all-zero path that merge with

the all-zero path for the first time.
Soft Decision

From equations 8.2-26, 8.2-24, and 8.2-25 in [1], and equations 13.28 and 13.27 in [6]:

P a f d P db d
d dfree

<

=

•

Â () ()2

with transfer function

T D N a D N

dT D N

dN
a f d D

d
d f d

d d

N
d

d

d d

f ree

free

(,)

(,)
()

()
=

=

=

•

= =

•

Â

Â
1

where f d() is the exponent of N as a function of d.

Results for BPSK, QPSK, OQPSK, PAM-2, QAM-4, precoded MSK, DE-BPSK, DE-QPSK,
DE-OQPSK, DE-MSK, DPSK, and BFSK are obtained as:

13-23

13 Measurements

P d Pb E

N
R db

b c
2

0

() =
=g

where Pb is the BER in the corresponding uncoded AWGN channel. For example, for
BPSK (equation 8.2-20 in [1]):

P d Q R db c2 2() = ()g

Hard Decision

From equations 8.2-33, 8.2-28, and 8.2-29 in [1], and equations 13.28, 13.24, and 13.25 in
[6]:

P a f d P db d
d dfree

<

=

•

Â () ()2

where

P d
d

k
p pk d k

k d

d

2

1 2

1() ()

()/

=
Ê

Ë
Á

ˆ

¯
˜ - -

= +
Â

when d is odd, and

P d
d

k
p p

d

d
p pk d k

k d

d
d d

2

2 1

2 2
1

1

2 2
1() ()

/
()

/

/ /=
Ê

Ë
Á

ˆ

¯
˜ - +

Ê

Ë
Á

ˆ

¯
˜ --

= +
Â

when d is even (p is the bit error rate (BER) in an uncoded AWGN channel).

Performance Results via Simulation

• “Section Overview” on page 13-25
• “Using Simulated Data to Compute Bit and Symbol Error Rates” on page 13-25
• “Example: Computing Error Rates” on page 13-25
• “Comparing Symbol Error Rate and Bit Error Rate” on page 13-26

13-24

 Bit Error Rate (BER)

Section Overview

One way to compute the bit error rate or symbol error rate for a communication system
is to simulate the transmission of data messages and compare all messages before and
after transmission. The simulation of the communication system components using
Communications System Toolbox is covered in other parts of this guide. This section
describes how to compare the data messages that enter and leave the simulation.

Another example of computing performance results via simulation is in “Curve Fitting for
Error Rate Plots” on page 13-35 in the discussion of curve fitting.

Using Simulated Data to Compute Bit and Symbol Error Rates

The biterr function compares two sets of data and computes the number of bit errors
and the bit error rate. The symerr function compares two sets of data and computes the
number of symbol errors and the symbol error rate. An error is a discrepancy between
corresponding points in the two sets of data.

Of the two sets of data, typically one represents messages entering a transmitter and
the other represents recovered messages leaving a receiver. You might also compare
data entering and leaving other parts of your communication system, for example, data
entering an encoder and data leaving a decoder.

If your communication system uses several bits to represent one symbol, counting bit
errors is different from counting symbol errors. In either the bit- or symbol-counting case,
the error rate is the number of errors divided by the total number (of bits or symbols)
transmitted.

Note: To ensure an accurate error rate, you should typically simulate enough data to
produce at least 100 errors.

If the error rate is very small (for example, 10-6 or smaller), the semianalytic technique
might compute the result more quickly than a simulation-only approach. See
“Performance Results via the Semianalytic Technique” on page 13-27 for more
information on how to use this technique.

Example: Computing Error Rates

The script below uses the symerr function to compute the symbol error rates for a noisy
linear block code. After artificially adding noise to the encoded message, it compares

13-25

13 Measurements

the resulting noisy code to the original code. Then it decodes and compares the decoded
message to the original one.

m = 3; n = 2^m-1; k = n-m; % Prepare to use Hamming code.

msg = randi([0 1],k*200,1); % 200 messages of k bits each

code = encode(msg,n,k,'hamming');

codenoisy = rem(code+(rand(n*200,1)>.95),2); % Add noise.

% Decode and correct some errors.

newmsg = decode(codenoisy,n,k,'hamming');

% Compute and display symbol error rates.

noisyVec = step(comm.ErrorRate,code,codenoisy);

decodedVec = step(comm.ErrorRate,msg,newmsg);

disp(['Error rate in the received code: ',num2str(noisyVec(1))])

disp(['Error rate after decoding: ',num2str(decodedVec(1))])

The output is below. The error rate decreases after decoding because the Hamming
decoder corrects some of the errors. Your results might vary because this example uses
random numbers.

Error rate in the received code: 0.054286

Error rate after decoding: 0.03

Comparing Symbol Error Rate and Bit Error Rate

In the example above, the symbol errors and bit errors are the same because each symbol
is a bit. The commands below illustrate the difference between symbol errors and bit
errors in other situations.

a = [1 2 3]'; b = [1 4 4]';

format rat % Display fractions instead of decimals.

% Create ErrorRate Calculator System object

serVec = step(comm.ErrorRate,a,b);

srate = serVec(1)

snum = serVec(2)

% Convert integers to bits

hIntToBit = comm.IntegerToBit(3);

a_bit = step(hIntToBit, a);

b_bit = step(hIntToBit, b);

% Calculate BER

berVec = step(comm.ErrorRate,a_bit,b_bit);

brate = berVec(1)

bnum = berVec(2)

The output is below.

13-26

 Bit Error Rate (BER)

snum =

 2

srate =

 2/3

bnum =

 5

brate =

 5/9

bnum is 5 because the second entries differ in two bits and the third entries differ in three
bits. brate is 5/9 because the total number of bits is 9. The total number of bits is, by
definition, the number of entries in a or b times the maximum number of bits among all
entries of a and b.

Performance Results via the Semianalytic Technique

The technique described in “Performance Results via Simulation” on page 13-24
works well for a large variety of communication systems, but can be prohibitively time-
consuming if the system's error rate is very small (for example, 10-6 or smaller). This
section describes how to use the semianalytic technique as an alternative way to compute
error rates. For certain types of systems, the semianalytic technique can produce results
much more quickly than a nonanalytic method that uses only simulated data.

The semianalytic technique uses a combination of simulation and analysis to
determine the error rate of a communication system. The semianalytic function in
Communications System Toolbox helps you implement the semianalytic technique by
performing some of the analysis.

When to Use the Semianalytic Technique

The semianalytic technique works well for certain types of communication systems,
but not for others. The semianalytic technique is applicable if a system has all of these
characteristics:

13-27

13 Measurements

• Any effects of multipath fading, quantization, and amplifier nonlinearities must
precede the effects of noise in the actual channel being modeled.

• The receiver is perfectly synchronized with the carrier, and timing jitter is negligible.
Because phase noise and timing jitter are slow processes, they reduce the applicability
of the semianalytic technique to a communication system.

• The noiseless simulation has no errors in the received signal constellation. Distortions
from sources other than noise should be mild enough to keep each signal point in
its correct decision region. If this is not the case, the calculated BER is too low. For
instance, if the modeled system has a phase rotation that places the received signal
points outside their proper decision regions, the semianalytic technique is not suitable
to predict system performance.

Furthermore, the semianalytic function assumes that the noise in the actual channel
being modeled is Gaussian. For details on how to adapt the semianalytic technique for
non-Gaussian noise, see the discussion of generalized exponential distributions in [11].

Procedure for the Semianalytic Technique

The procedure below describes how you would typically implement the semianalytic
technique using the semianalytic function:

1 Generate a message signal containing at least ML symbols, where M is the alphabet
size of the modulation and L is the length of the impulse response of the channel in
symbols. A common approach is to start with an augmented binary pseudonoise (PN)
sequence of total length (log2M)ML. An augmented PN sequence is a PN sequence
with an extra zero appended, which makes the distribution of ones and zeros equal.

2 Modulate a carrier with the message signal using baseband modulation. Supported
modulation types are listed on the reference page for semianalytic. Shape the
resultant signal with rectangular pulse shaping, using the oversampling factor
that you will later use to filter the modulated signal. Store the result of this step as
txsig for later use.

3 Filter the modulated signal with a transmit filter. This filter is often a square-root
raised cosine filter, but you can also use a Butterworth, Bessel, Chebyshev type 1
or 2, elliptic, or more general FIR or IIR filter. If you use a square-root raised cosine
filter, use it on the nonoversampled modulated signal and specify the oversampling
factor in the filtering function. If you use another filter type, you can apply it to the
rectangularly pulse shaped signal.

4 Run the filtered signal through a noiseless channel. This channel can include
multipath fading effects, phase shifts, amplifier nonlinearities, quantization, and

13-28

 Bit Error Rate (BER)

additional filtering, but it must not include noise. Store the result of this step as
rxsig for later use.

5 Invoke the semianalytic function using the txsig and rxsig data from earlier
steps. Specify a receive filter as a pair of input arguments, unless you want to use
the function's default filter. The function filters rxsig and then determines the
error probability of each received signal point by analytically applying the Gaussian
noise distribution to each point. The function averages the error probabilities over
the entire received signal to determine the overall error probability. If the error
probability calculated in this way is a symbol error probability, the function converts
it to a bit error rate, typically by assuming Gray coding. The function returns the
bit error rate (or, in the case of DQPSK modulation, an upper bound on the bit error
rate).

Example: Using the Semianalytic Technique

The example below illustrates the procedure described above, using 16-QAM modulation.
It also compares the error rates obtained from the semianalytic technique with the
theoretical error rates obtained from published formulas and computed using the
berawgn function. The resulting plot shows that the error rates obtained using the two
methods are nearly identical. The discrepancies between the theoretical and computed
error rates are largely due to the phase offset in this example's channel model.

% Step 1. Generate message signal of length >= M^L.

M = 16; % Alphabet size of modulation

L = 1; % Length of impulse response of channel

msg = [0:M-1 0]; % M-ary message sequence of length > M^L

% Step 2. Modulate the message signal using baseband modulation.

hMod = comm.RectangularQAMModulator(M); % Use 16-QAM.

modsig = step(hMod,msg'); % Modulate data

Nsamp = 16;

modsig = rectpulse(modsig,Nsamp); % Use rectangular pulse shaping.

% Step 3. Apply a transmit filter.

txsig = modsig; % No filter in this example

% Step 4. Run txsig through a noiseless channel.

rxsig = txsig*exp(1i*pi/180); % Static phase offset of 1 degree

% Step 5. Use the semianalytic function.

% Specify the receive filter as a pair of input arguments.

% In this case, num and den describe an ideal integrator.

num = ones(Nsamp,1)/Nsamp;

13-29

13 Measurements

den = 1;

EbNo = 0:20; % Range of Eb/No values under study

ber = semianalytic(txsig,rxsig,'qam',M,Nsamp,num,den,EbNo);

% For comparison, calculate theoretical BER.

bertheory = berawgn(EbNo,'qam',M);

% Plot computed BER and theoretical BER.

figure; semilogy(EbNo,ber,'k*');

hold on; semilogy(EbNo,bertheory,'ro');

title('Semianalytic BER Compared with Theoretical BER');

legend('Semianalytic BER with Phase Offset',...

 'Theoretical BER Without Phase Offset','Location','SouthWest');

hold off;

This example creates a figure like the one below.

Theoretical Performance Results

• “Computing Theoretical Error Statistics” on page 13-31
• “Plotting Theoretical Error Rates” on page 13-31

13-30

 Bit Error Rate (BER)

• “Comparing Theoretical and Empirical Error Rates” on page 13-32

Computing Theoretical Error Statistics

While the biterr function discussed above can help you gather empirical error
statistics, you might also compare those results to theoretical error statistics. Certain
types of communication systems are associated with closed-form expressions for the bit
error rate or a bound on it. The functions listed in the table below compute the closed-
form expressions for some types of communication systems, where such expressions exist.

Type of Communication System Function

Uncoded AWGN channel berawgn

Coded AWGN channel bercoding

Uncoded Rayleigh and Rician fading
channel

berfading

Uncoded AWGN channel with imperfect
synchronization

bersync

Each function's reference page lists one or more books containing the closed-form
expressions that the function implements.

Plotting Theoretical Error Rates

The example below uses the bercoding function to compute upper bounds on bit
error rates for convolutional coding with a soft-decision decoder. The data used for the
generator and distance spectrum are from [1] and [12], respectively.

coderate = 1/4; % Code rate

% Create a structure dspec with information about distance spectrum.

dspec.dfree = 10; % Minimum free distance of code

dspec.weight = [1 0 4 0 12 0 32 0 80 0 192 0 448 0 1024 ...

 0 2304 0 5120 0]; % Distance spectrum of code

EbNo = 3:0.5:8;

berbound = bercoding(EbNo,'conv','soft',coderate,dspec);

semilogy(EbNo,berbound) % Plot the results.

xlabel('E_b/N_0 (dB)'); ylabel('Upper Bound on BER');

title('Theoretical Bound on BER for Convolutional Coding');

grid on;

This example produces the following plot.

13-31

13 Measurements

Comparing Theoretical and Empirical Error Rates

The example below uses the berawgn function to compute symbol error rates for pulse
amplitude modulation (PAM) with a series of Eb/N0 values. For comparison, the code
simulates 8-PAM with an AWGN channel and computes empirical symbol error rates.
The code also plots the theoretical and empirical symbol error rates on the same set of
axes.

% 1. Compute theoretical error rate using BERAWGN.

rng('default') % Set random number seed for repeatability

%

M = 8; EbNo = 0:13;

[ber, ser] = berawgn(EbNo,'pam',M);

% Plot theoretical results.

figure; semilogy(EbNo,ser,'r');

xlabel('E_b/N_0 (dB)'); ylabel('Symbol Error Rate');

grid on; drawnow;

% 2. Compute empirical error rate by simulating.

% Set up.

n = 10000; % Number of symbols to process

k = log2(M); % Number of bits per symbol

% Convert from EbNo to SNR.

% Note: Because No = 2*noiseVariance^2, we must add 3 dB

% to get SNR. For details, see Proakis' book listed in

13-32

 Bit Error Rate (BER)

% "Selected Bibliography for Performance Evaluation."

snr = EbNo+3+10*log10(k);

% Preallocate variables to save time.

ynoisy = zeros(n,length(snr));

z = zeros(n,length(snr));

berVec = zeros(3,length(EbNo));

% PAM modulation and demodulation system objects

h = comm.PAMModulator(M);

h2 = comm.PAMDemodulator(M);

% AWGNChannel System object

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)');

% ErrorRate calculator System object to compare decoded symbols to the

% original transmitted symbols.

hErrorCalc = comm.ErrorRate;

% Main steps in the simulation

x = randi([0 M-1],n,1); % Create message signal.

y = step(h,x); % Modulate.

hChan.SignalPower = (real(y)' * real(y))/ length(real(y));

% Loop over different SNR values.

for jj = 1:length(snr)

 reset(hErrorCalc)

 hChan.SNR = snr(jj); % Assign Channel SNR

 ynoisy(:,jj) = step(hChan,real(y)); % Add AWGN

 z(:,jj) = step(h2,complex(ynoisy(:,jj))); % Demodulate.

 % Compute symbol error rate from simulation.

 berVec(:,jj) = step(hErrorCalc, x, z(:,jj));

end

% 3. Plot empirical results, in same figure.

hold on; semilogy(EbNo,berVec(1,:),'b.');

legend('Theoretical SER','Empirical SER');

title('Comparing Theoretical and Empirical Error Rates');

hold off;

This example produces a plot like the one in the following figure. Your plot might vary
because the simulation uses random numbers.

13-33

13 Measurements

Error Rate Plots

• “Section Overview” on page 13-34
• “Creating Error Rate Plots Using semilogy” on page 13-35
• “Curve Fitting for Error Rate Plots” on page 13-35
• “Example: Curve Fitting for an Error Rate Plot” on page 13-36

Section Overview

Error rate plots provide a visual way to examine the performance of a communication
system, and they are often included in publications. This section mentions some of the
tools you can use to create error rate plots, modify them to suit your needs, and do curve
fitting on error rate data. It also provides an example of curve fitting. For more detailed
discussions about the more general plotting capabilities in MATLAB, see the MATLAB
documentation set.

13-34

 Bit Error Rate (BER)

Creating Error Rate Plots Using semilogy

In many error rate plots, the horizontal axis indicates Eb/N0 values in dB and the vertical
axis indicates the error rate using a logarithmic (base 10) scale. To see an example of
such a plot, as well as the code that creates it, see “Comparing Theoretical and Empirical
Error Rates” on page 13-32. The part of that example that creates the plot uses the
semilogy function to produce a logarithmic scale on the vertical axis and a linear scale
on the horizontal axis.

Other examples that illustrate the use of semilogy are in these sections:

• “Example: Using the Semianalytic Technique” on page 13-29, which also
illustrates

• Plotting two sets of data on one pair of axes
• Adding a title
• Adding a legend

• “Plotting Theoretical Error Rates” on page 13-31, which also illustrates

• Adding axis labels
• Adding grid lines

Curve Fitting for Error Rate Plots

Curve fitting is useful when you have a small or imperfect data set but want to plot
a smooth curve for presentation purposes. The berfit function in Communications
System Toolbox offers curve-fitting capabilities that are well suited to the situation when
the empirical data describes error rates at different Eb/N0 values. This function enables
you to

• Customize various relevant aspects of the curve-fitting process, such as the type of
closed-form function (from a list of preset choices) used to generate the fit.

• Plot empirical data along with a curve that berfit fits to the data.
• Interpolate points on the fitted curve between Eb/N0 values in your empirical data set

to make the plot smoother looking.
• Collect relevant information about the fit, such as the numerical values of points

along the fitted curve and the coefficients of the fit expression.

13-35

13 Measurements

Note: The berfit function is intended for curve fitting or interpolation, not
extrapolation. Extrapolating BER data beyond an order of magnitude below the smallest
empirical BER value is inherently unreliable.

For a full list of inputs and outputs for berfit, see its reference page.

Example: Curve Fitting for an Error Rate Plot

This example simulates a simple DBPSK (differential binary phase shift keying)
communication system and plots error rate data for a series of Eb/N0 values. It uses
the berfit function to fit a curve to the somewhat rough set of empirical error rates.
Because the example is long, this discussion presents it in multiple steps:

• “Setting Up Parameters for the Simulation” on page 13-36
• “Simulating the System Using a Loop” on page 13-37
• “Plotting the Empirical Results and the Fitted Curve” on page 13-38

Setting Up Parameters for the Simulation

The first step in the example sets up the parameters to be used during the simulation.
Parameters include the range of Eb/N0 values to consider and the minimum number of
errors that must occur before the simulation computes an error rate for that Eb/N0 value.

Note: For most applications, you should base an error rate computation on a larger
number of errors than is used here (for instance, you might change numerrmin to 100 in
the code below). However, this example uses a small number of errors merely to illustrate
how curve fitting can smooth out a rough data set.

% Set up initial parameters.

siglen = 100000; % Number of bits in each trial

M = 2; % DBPSK is binary.

% DBPSK modulation and demodulation System objects

hMod = comm.DBPSKModulator;

hDemod = comm.DBPSKDemodulator;

% AWGNChannel System object

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)');

% ErrorRate calculator System object to compare decoded symbols to the

% original transmitted symbols.

hErrorCalc = comm.ErrorRate;

13-36

 Bit Error Rate (BER)

EbNomin = 0; EbNomax = 9; % EbNo range, in dB

numerrmin = 5; % Compute BER only after 5 errors occur.

EbNovec = EbNomin:1:EbNomax; % Vector of EbNo values

numEbNos = length(EbNovec); % Number of EbNo values

% Preallocate space for certain data.

ber = zeros(1,numEbNos); % final BER values

berVec = zeros(3,numEbNos); % Updated BER values

intv = cell(1,numEbNos); % Cell array of confidence intervals

Simulating the System Using a Loop

The next step in the example is to use a for loop to vary the Eb/N0 value (denoted by
EbNo in the code) and simulate the communication system for each value. The inner
while loop ensures that the simulation continues to use a given EbNo value until at least
the predefined minimum number of errors has occurred. When the system is very noisy,
this requires only one pass through the while loop, but in other cases, this requires
multiple passes.

The communication system simulation uses these toolbox functions:

• randi to generate a random message sequence
• dpskmod to perform DBPSK modulation
• awgn to model a channel with additive white Gaussian noise
• dpskdemod to perform DBPSK demodulation
• biterr to compute the number of errors for a given pass through the while loop
• berconfint to compute the final error rate and confidence interval for a given value

of EbNo

As the example progresses through the for loop, it collects data for later use in curve
fitting and plotting:

• ber, a vector containing the bit error rates for the series of EbNo values.
• intv, a cell array containing the confidence intervals for the series of EbNo values.

Each entry in intv is a two-element vector that gives the endpoints of the interval.

% Loop over the vector of EbNo values.

berVec = zeros(3,numEbNos); % Reset

for jj = 1:numEbNos

 EbNo = EbNovec(jj);

 snr = EbNo; % Because of binary modulation

 reset(hErrorCalc)

 hChan.SNR = snr; % Assign Channel SNR

13-37

13 Measurements

 % Simulate until numerrmin errors occur.

 while (berVec(2,jj) < numerrmin)

 msg = randi([0,M-1], siglen, 1); % Generate message sequence.

 txsig = step(hMod, msg); % Modulate.

 hChan.SignalPower = (txsig'*txsig)/length(txsig); % Calculate and

 % assign signal power

 rxsig = step(hChan,txsig); % Add noise.

 decodmsg = step(hDemod, rxsig); % Demodulate.

 if (berVec(2,jj)==0)

 % The first symbol of a differentially encoded transmission

 % is discarded.

 berVec(:,jj) = step(hErrorCalc, msg(2:end),decodmsg(2:end));

 else

 berVec(:,jj) = step(hErrorCalc, msg, decodmsg);

 end

 end

 % Error rate and 98% confidence interval for this EbNo value

 [ber(jj), intv1] = berconfint(berVec(2,jj),berVec(3,jj)-1,.98);

 intv{jj} = intv1; % Store in cell array for later use.

 disp(['EbNo = ' num2str(EbNo) ' dB, ' num2str(berVec(2,jj)) ...

 ' errors, BER = ' num2str(ber(jj))])

end

This part of the example displays output in the Command Window as it progresses
through the for loop. Your exact output might be different, because this example uses
random numbers.

EbNo = 0 dB, 189 errors, BER = 0.18919

EbNo = 1 dB, 139 errors, BER = 0.13914

EbNo = 2 dB, 105 errors, BER = 0.10511

EbNo = 3 dB, 66 errors, BER = 0.066066

EbNo = 4 dB, 40 errors, BER = 0.04004

EbNo = 5 dB, 18 errors, BER = 0.018018

EbNo = 6 dB, 6 errors, BER = 0.006006

EbNo = 7 dB, 11 errors, BER = 0.0055028

EbNo = 8 dB, 5 errors, BER = 0.00071439

EbNo = 9 dB, 5 errors, BER = 0.00022728

EbNo = 10 dB, 5 errors, BER = 1.006e-005

Plotting the Empirical Results and the Fitted Curve

The final part of this example fits a curve to the BER data collected from the simulation
loop. It also plots error bars using the output from the berconfint function.

% Use BERFIT to plot the best fitted curve,

13-38

 Bit Error Rate (BER)

% interpolating to get a smooth plot.

fitEbNo = EbNomin:0.25:EbNomax; % Interpolation values

berfit(EbNovec,ber,fitEbNo,[],'exp');

% Also plot confidence intervals.

hold on;

for jj=1:numEbNos

 semilogy([EbNovec(jj) EbNovec(jj)],intv{jj},'g-+');

end

hold off;

BERTool

The command bertool launches the Bit Error Rate Analysis Tool (BERTool)
application.

The application enables you to analyze the bit error rate (BER) performance of
communications systems. BERTool computes the BER as a function of signal-to-
noise ratio. It analyzes performance either with Monte-Carlo simulations of MATLAB
functions and Simulink models or with theoretical closed-form expressions for selected
types of communication systems.

13-39

13 Measurements

Using BERTool you can:

• Generate BER data for a communication system using

• Closed-form expressions for theoretical BER performance of selected types of
communication systems.

• The semianalytic technique.
• Simulations contained in MATLAB simulation functions or Simulink models. After

you create a function or model that simulates the system, BERTool iterates over
your choice of Eb/N0 values and collects the results.

• Plot one or more BER data sets on a single set of axes. For example, you can
graphically compare simulation data with theoretical results or simulation data from
a series of similar models of a communication system.

• Fit a curve to a set of simulation data.
• Send BER data to the MATLAB workspace or to a file for any further processing you

might want to perform.

Note: BERTool is designed for analyzing bit error rates only, not symbol error rates,
word error rates, or other types of error rates. If, for example, your simulation computes
a symbol error rate (SER), convert the SER to a BER before using the simulation with
BERTool.

The following sections describe the Bit Error Rate Analysis Tool (BERTool) and provide
examples showing how to use its GUI.

• “Start BERTool” on page 13-41
• “The BERTool Environment” on page 13-41
• “Computing Theoretical BERs” on page 13-44
• “Using the Semianalytic Technique to Compute BERs” on page 13-50
• “Run MATLAB Simulations” on page 13-55
• “Use Simulation Functions with BERTool” on page 13-61
• “Run Simulink Simulations” on page 13-68
• “Use Simulink Models with BERTool” on page 13-73
• “Manage BER Data” on page 13-83

13-40

 Bit Error Rate (BER)

Start BERTool

To open BERTool, type

bertool

The BERTool Environment

• “Components of BERTool” on page 13-41
• “Interaction Among BERTool Components” on page 13-43

Components of BERTool

• A data viewer at the top. It is initially empty.

13-41

13 Measurements

After you instruct BERTool to generate one or more BER data sets, they appear in
the data viewer. An example that shows how data sets look in the data viewer is in
“Example: Using a MATLAB Simulation with BERTool” on page 13-56.

• A set of tabs on the bottom. Labeled Theoretical, Semianalytic, and Monte Carlo,
the tabs correspond to the different methods by which BERTool can generate BER
data.

13-42

 Bit Error Rate (BER)

To learn more about each of the methods, see

• “Computing Theoretical BERs” on page 13-44
• “Using the Semianalytic Technique to Compute BERs” on page 13-50
• “Run MATLAB Simulations” on page 13-55 or “Run Simulink Simulations” on

page 13-68
• A separate BER Figure window, which displays some or all of the BER data sets that

are listed in the data viewer. BERTool opens the BER Figure window after it has at
least one data set to display, so you do not see the BER Figure window when you first
open BERTool. For an example of how the BER Figure window looks, see “Example:
Using the Theoretical Tab in BERTool” on page 13-45.

Interaction Among BERTool Components

The components of BERTool act as one integrated tool. These behaviors reflect their
integration:

• If you select a data set in the data viewer, BERTool reconfigures the tabs to reflect the
parameters associated with that data set and also highlights the corresponding data
in the BER Figure window. This is useful if the data viewer displays multiple data
sets and you want to recall the meaning and origin of each data set.

• If you click data plotted in the BER Figure window, BERTool reconfigures the
tabs to reflect the parameters associated with that data and also highlights the
corresponding data set in the data viewer.

Note: You cannot click on a data point while BERTool is generating Monte Carlo
simulation results. You must wait until the tool generates all data points before
clicking for more information.

• If you configure the Semianalytic or Theoretical tab in a way that is already
reflected in an existing data set, BERTool highlights that data set in the data viewer.
This prevents BERTool from duplicating its computations and its entries in the data
viewer, while still showing you the results that you requested.

• If you close the BER Figure window, then you can reopen it by choosing BER Figure
from the Window menu in BERTool.

• If you select options in the data viewer that affect the BER plot, the BER Figure
window reflects your selections immediately. Such options relate to data set names,
confidence intervals, curve fitting, and the presence or absence of specific data sets in
the BER plot.

13-43

13 Measurements

Note: If you want to observe the integration yourself but do not yet have any data sets
in BERTool, then first try the procedure in “Example: Using the Theoretical Tab in
BERTool” on page 13-45.

Note: If you save the BER Figure window using the window's File menu, the resulting
file contains the contents of the window but not the BERTool data that led to the plot. To
save an entire BERTool session, see “Saving a BERTool Session” on page 13-86.

Computing Theoretical BERs

• “Section Overview” on page 13-44
• “Example: Using the Theoretical Tab in BERTool” on page 13-45
• “Available Sets of Theoretical BER Data” on page 13-48

Section Overview

You can use BERTool to generate and analyze theoretical BER data. Theoretical data
is useful for comparison with your simulation results. However, closed-form BER
expressions exist only for certain kinds of communication systems.

To access the capabilities of BERTool related to theoretical BER data, use the following
procedure:

1 Open BERTool, and go to the Theoretical tab.

13-44

 Bit Error Rate (BER)

2 Set the parameters to reflect the system whose performance you want to analyze.
Some parameters are visible and active only when other parameters have specific
values. See “Available Sets of Theoretical BER Data” on page 13-48 for details.

3 Click Plot.

For an example that shows how to generate and analyze theoretical BER data via
BERTool, see “Example: Using the Theoretical Tab in BERTool” on page 13-45.

Also, “Available Sets of Theoretical BER Data” on page 13-48 indicates which
combinations of parameters are available on the Theoretical tab and which underlying
functions perform computations.

Example: Using the Theoretical Tab in BERTool

This example illustrates how to use BERTool to generate and plot theoretical BER data.
In particular, the example compares the performance of a communication system that
uses an AWGN channel and QAM modulation of different orders.

Running the Theoretical Example

1 Open BERTool, and go to the Theoretical tab.
2 Set the parameters as shown in the following figure.

13-45

13 Measurements

3 Click Plot.

BERTool creates an entry in the data viewer and plots the data in the BER Figure
window. Even though the parameters request that Eb/N0 go up to 18, BERTool plots
only those BER values that are at least 10-8. The following figures illustrate this
step.

13-46

 Bit Error Rate (BER)

4 Change the Modulation order parameter to 16, and click Plot.

BERTool creates another entry in the data viewer and plots the new data in the
same BER Figure window (not pictured).

5 Change the Modulation order parameter to 64, and click Plot.

BERTool creates another entry in the data viewer and plots the new data in the
same BER Figure window, as shown in the following figures.

6 To recall which value of Modulation order corresponds to a given curve, click the
curve. BERTool responds by adjusting the parameters in the Theoretical tab to
reflect the values that correspond to that curve.

7 To remove the last curve from the plot (but not from the data viewer), clear the check
box in the last entry of the data viewer in the Plot column. To restore the curve to
the plot, select the check box again.

13-47

13 Measurements

Available Sets of Theoretical BER Data

BERTool can generate a large set of theoretical bit-error rates, but not all combinations
of parameters are currently supported. The Theoretical tab adjusts itself to your
choices, so that the combination of parameters is always valid. You can set the
Modulation order parameter by selecting a choice from the menu or by typing a value
in the field. The Normalized timing error must be between 0 and 0.5.

BERTool assumes that Gray coding is used for all modulations.

For QAM, when log2 M is odd (M being the modulation order), a rectangular
constellation is assumed.

Combinations of Parameters for AWGN Channel Systems

The following table lists the available sets of theoretical BER data for systems that use
an AWGN channel.

Modulation Modulation Order Other Choices

2, 4 Differential or nondifferential encoding.

PSK

8, 16, 32, 64, or a
higher power of 2

OQPSK 4 Differential or nondifferential encoding.
DPSK 2, 4, 8, 16, 32, 64, or a

higher power of 2
PAM 2, 4, 8, 16, 32, 64, or a

higher power of 2
QAM 4, 8, 16, 32, 64, 128,

256, 512, 1024, or a
higher power of 2
2 Orthogonal or nonorthogonal; Coherent or

Noncoherent demodulation.
FSK

4, 8, 16, 32, or a higher
power of 2

Orthogonal; Coherent demodulation.

13-48

 Bit Error Rate (BER)

Modulation Modulation Order Other Choices

4, 8, 16, 32, or 64 Orthogonal; Noncoherent demodulation.
MSK 2 Coherent conventional or precoded MSK;

Noncoherent precoded MSK.
CPFSK 2, 4, 8, 16, or a higher

power of 2
Modulation index > 0.

BER results are also available for the following:

• block and convolutional coding with hard-decision decoding for all modulations except
CPFSK

• block coding with soft-decision decoding for all binary modulations (including 4-PSK
and 4-QAM) except CPFSK, noncoherent non-orthogonal FSK, and noncoherent MSK

• convolutional coding with soft-decision decoding for all binary modulations (including
4-PSK and 4-QAM) except CPFSK

• uncoded nondifferentially-encoded 2-PSK with synchronization errors

For more information about specific combinations of parameters, including bibliographic
references that contain closed-form expressions, see the reference pages for the following
functions:

• berawgn — For systems with no coding and perfect synchronization
• bercoding — For systems with channel coding
• bersync — For systems with BPSK modulation, no coding, and imperfect

synchronization

Combinations of Parameters for Rayleigh and Rician Channel Systems

The following table lists the available sets of theoretical BER data for systems that use a
Rayleigh or Rician channel.

When diversity is used, the SNR on each diversity branch is derived from the SNR at the
input of the channel (EbNo) divided by the diversity order.

Modulation Modulation Order Other Choices

PSK 2 Differential or nondifferential encoding

13-49

13 Measurements

Modulation Modulation Order Other Choices

Diversity order ≧1

In the case of nondifferential encoding,
diversity order being 1, and Rician fading, a
value for RMS phase noise (in radians) can be
specified.

4, 8, 16, 32, 64, or a
higher power of 2

Diversity order ≧1

OQPSK 4 Diversity order ≧1
DPSK 2, 4, 8, 16, 32, 64, or a

higher power of 2
Diversity order ≧1

PAM 2, 4, 8, 16, 32, 64, or a
higher power of 2

Diversity order ≧1

QAM 4, 8, 16, 32, 64, 128,
256, 512, 1024, or a
higher power of 2

Diversity order ≧1

2 Correlation coefficient Œ -[,]1 1 .

Coherent or Noncoherent demodulation

Diversity order ≧1

In the case of a nonzero correlation coefficient
and noncoherent demodulation, the diversity
order is 1 only.

FSK

4, 8, 16, 32, or a
higher power of 2

Noncoherent demodulation only. Diversity
order ≧1

For more information about specific combinations of parameters, including bibliographic
references that contain closed-form expressions, see the reference page for the
berfading function.

Using the Semianalytic Technique to Compute BERs

• “Section Overview” on page 13-51
• “Example: Using the Semianalytic Tab in BERTool” on page 13-51

13-50

 Bit Error Rate (BER)

• “Procedure for Using the Semianalytic Tab in BERTool” on page 13-53

Section Overview

You can use BERTool to generate and analyze BER data via the semianalytic technique.
The semianalytic technique is discussed in “Performance Results via the Semianalytic
Technique” on page 13-27, and “When to Use the Semianalytic Technique” on page
13-27 is particularly relevant as background material.

To access the semianalytic capabilities of BERTool, open the Semianalytic tab.

For further details about how BERTool applies the semianalytic technique, see the
reference page for the semianalytic function, which BERTool uses to perform
computations.

Example: Using the Semianalytic Tab in BERTool

This example illustrates how BERTool applies the semianalytic technique, using 16-
QAM modulation. This example is a variation on the example in “Example: Using the
Semianalytic Technique” on page 13-29, but it is tailored to use BERTool instead of
using the semianalytic function directly.

13-51

13 Measurements

Running the Semianalytic Example

1 To set up the transmitted and received signals, run steps 1 through 4 from the code
example in “Example: Using the Semianalytic Technique” on page 13-29. The
code is repeated below.

% Step 1. Generate message signal of length >= M^L.

M = 16; % Alphabet size of modulation

L = 1; % Length of impulse response of channel

msg = [0:M-1 0]; % M-ary message sequence of length > M^L

% Step 2. Modulate the message signal using baseband modulation.

hMod = comm.RectangularQAMModulator(M); % Use 16-QAM.

modsig = step(hMod,msg'); % Modulate data

Nsamp = 16;

modsig = rectpulse(modsig,Nsamp); % Use rectangular pulse shaping.

% Step 3. Apply a transmit filter.

txsig = modsig; % No filter in this example

% Step 4. Run txsig through a noiseless channel.

rxsig = txsig*exp(1i*pi/180); % Static phase offset of 1 degree

2 Open BERTool and go to the Semianalytic tab.
3 Set parameters as shown in the following figure.

4 Click Plot.

13-52

 Bit Error Rate (BER)

Visible Results of the Semianalytic Example

After you click Plot, BERTool creates a listing for the resulting data in the data viewer.

BERTool plots the data in the BER Figure window.

Procedure for Using the Semianalytic Tab in BERTool

The procedure below describes how you typically implement the semianalytic technique
using BERTool:

1 Generate a message signal containing at least ML symbols, where M is the alphabet
size of the modulation and L is the length of the impulse response of the channel in
symbols. A common approach is to start with an augmented binary pseudonoise (PN)
sequence of total length (log2M)ML. An augmented PN sequence is a PN sequence
with an extra zero appended, which makes the distribution of ones and zeros equal.

13-53

13 Measurements

2 Modulate a carrier with the message signal using baseband modulation. Supported
modulation types are listed on the reference page for semianalytic. Shape the
resultant signal with rectangular pulse shaping, using the oversampling factor
that you will later use to filter the modulated signal. Store the result of this step as
txsig for later use.

3 Filter the modulated signal with a transmit filter. This filter is often a square-root
raised cosine filter, but you can also use a Butterworth, Bessel, Chebyshev type 1
or 2, elliptic, or more general FIR or IIR filter. If you use a square-root raised cosine
filter, use it on the nonoversampled modulated signal and specify the oversampling
factor in the filtering function. If you use another filter type, you can apply it to the
rectangularly pulse shaped signal.

4 Run the filtered signal through a noiseless channel. This channel can include
multipath fading effects, phase shifts, amplifier nonlinearities, quantization, and
additional filtering, but it must not include noise. Store the result of this step as
rxsig for later use.

5 On the Semianalytic tab of BERTool, enter parameters as in the table below.

Parameter Name Meaning

Eb/No range A vector that lists the values of Eb/N0 for which you
want to collect BER data. The value in this field can
be a MATLAB expression or the name of a variable in
the MATLAB workspace.

Modulation type
Modulation order

These parameters describe the modulation scheme
you used earlier in this procedure.

Differential encoding This check box, which is visible and active for MSK
and PSK modulation, enables you to choose between
differential and nondifferential encoding.

Samples per symbol The number of samples per symbol in the transmitted
signal. This value is also the sampling rate of the
transmitted and received signals, in Hz.

Transmitted signal The txsig signal that you generated earlier in this
procedure

Received signal The rxsig signal that you generated earlier in this
procedure

Numerator Coefficients of the receiver filter that BERTool applies
to the received signal

13-54

 Bit Error Rate (BER)

Parameter Name Meaning

Denominator

Note: Consistency among the values in the GUI is important. For example, if the
signal referenced in the Transmitted signal field was generated using DPSK and
you set Modulation type to MSK, the results might not be meaningful.

6 Click Plot.

Semianalytic Computations and Results

After you click Plot, BERTool performs these tasks:

• Filters rxsig and then determines the error probability of each received signal point
by analytically applying the Gaussian noise distribution to each point. BERTool
averages the error probabilities over the entire received signal to determine the
overall error probability. If the error probability calculated in this way is a symbol
error probability, BERTool converts it to a bit error rate, typically by assuming Gray
coding. (If the modulation type is DQPSK or cross QAM, the result is an upper bound
on the bit error rate rather than the bit error rate itself.)

• Enters the resulting BER data in the data viewer of the BERTool window.
• Plots the resulting BER data in the BER Figure window.

Run MATLAB Simulations

• “Section Overview” on page 13-55
• “Example: Using a MATLAB Simulation with BERTool” on page 13-56
• “Varying the Stopping Criteria” on page 13-58
• “Plotting Confidence Intervals” on page 13-59
• “Fitting BER Points to a Curve” on page 13-60

Section Overview

You can use BERTool in conjunction with your own MATLAB simulation functions to
generate and analyze BER data. The MATLAB function simulates the communication
system whose performance you want to study. BERTool invokes the simulation for Eb/
N0 values that you specify, collects the BER data from the simulation, and creates a plot.
BERTool also enables you to easily change the Eb/N0 range and stopping criteria for the
simulation.

13-55

13 Measurements

To learn how to make your own simulation functions compatible with BERTool, see “Use
Simulation Functions with BERTool” on page 13-61.

Example: Using a MATLAB Simulation with BERTool

This example illustrates how BERTool can run a MATLAB simulation function. The
function is viterbisim, one of the demonstration files included with Communications
System Toolbox software.

To run this example, follow these steps:

1 Open BERTool and go to the Monte Carlo tab. (The default parameters depend on
whether you have Communications System Toolbox software installed. Also note
that the BER variable name field applies only to Simulink models.)

2 Set parameters as shown in the following figure.

3 Click Run.

BERTool runs the simulation function once for each specified value of Eb/N0 and
gathers BER data. (While BERTool is busy with this task, it cannot process certain
other tasks, including plotting data from the other tabs of the GUI.)

Then BERTool creates a listing in the data viewer.

13-56

 Bit Error Rate (BER)

BERTool plots the data in the BER Figure window.

4 To change the range of Eb/N0 while reducing the number of bits processed in each
case, type [5 5.2 5.3] in the Eb/No range field, type 1e5 in the Number of bits
field, and click Run.

BERTool runs the simulation function again for each new value of Eb/N0 and gathers
new BER data. Then BERTool creates another listing in the data viewer.

BERTool plots the data in the BER Figure window, adjusting the horizontal axis to
accommodate the new data.

13-57

13 Measurements

The two points corresponding to 5 dB from the two data sets are different because
the smaller value of Number of bits in the second simulation caused the simulation
to end before observing many errors. To learn more about the criteria that BERTool
uses for ending simulations, see “Varying the Stopping Criteria” on page 13-58.

For another example that uses BERTool to run a MATLAB simulation function, see
“Example: Prepare a Simulation Function for Use with BERTool” on page 13-65.

Varying the Stopping Criteria

When you create a MATLAB simulation function for use with BERTool, you must control
the flow so that the simulation ends when it either detects a target number of errors or
processes a maximum number of bits, whichever occurs first. To learn more about this
requirement, see “Requirements for Functions” on page 13-61; for an example, see
“Example: Prepare a Simulation Function for Use with BERTool” on page 13-65.

After creating your function, set the target number of errors and the maximum number
of bits in the Monte Carlo tab of BERTool.

13-58

 Bit Error Rate (BER)

Typically, a Number of errors value of at least 100 produces an accurate error rate.
The Number of bits value prevents the simulation from running too long, especially
at large values of Eb/N0. However, if the Number of bits value is so small that the
simulation collects very few errors, the error rate might not be accurate. You can use
confidence intervals to gauge the accuracy of the error rates that your simulation
produces; the larger the confidence interval, the less accurate the computed error rate.

As an example, follow the procedure described in “Example: Using a MATLAB
Simulation with BERTool” on page 13-56 and set Confidence Level to 95 for each of
the two data sets. The confidence intervals for the second data set are larger than those
for the first data set. This is because the second data set uses a small value for Number
of bits relative to the communication system properties and the values in Eb/No range,
resulting in BER values based on only a small number of observed errors.

Note: You can also use the Stop button in BERTool to stop a series of simulations
prematurely, as long as your function is set up to detect and react to the button press.

Plotting Confidence Intervals

After you run a simulation with BERTool, the resulting data set in the data viewer has
an active menu in the Confidence Level column. The default value is off, so that the
simulation data in the BER Figure window does not show confidence intervals.

To show confidence intervals in the BER Figure window, set Confidence Level to a
numerical value: 90%, 95%, or 99%.

The plot in the BER Figure window responds immediately to your choice. A sample plot
is below.

13-59

13 Measurements

For an example that plots confidence intervals for a Simulink simulation, see “Example:
Using a Simulink Model with BERTool” on page 13-69.

To find confidence intervals for levels not listed in the Confidence Level menu, use the
berconfint function.

Fitting BER Points to a Curve

After you run a simulation with BERTool, the BER Figure window plots individual BER
data points. To fit a curve to a data set that contains at least four points, select the box in
the Fit column of the data viewer.

The plot in the BER Figure window responds immediately to your choice. A sample plot
is below.

13-60

 Bit Error Rate (BER)

For an example that performs curve fitting for data from a Simulink simulation and
generates the plot shown above, see “Example: Using a Simulink Model with BERTool”
on page 13-69. For an example that performs curve fitting for data from a MATLAB
simulation function, see “Example: Prepare a Simulation Function for Use with
BERTool” on page 13-65.

For greater flexibility in the process of fitting a curve to BER data, use the berfit
function.

Use Simulation Functions with BERTool

• “Requirements for Functions” on page 13-61
• “Template for a Simulation Function” on page 13-62
• “Example: Prepare a Simulation Function for Use with BERTool” on page 13-65

Requirements for Functions

When you create a MATLAB function for use with BERTool, ensure the function
interacts properly with the GUI. This section describes the inputs, outputs, and basic
operation of a BERTool-compatible function.

13-61

13 Measurements

Input Arguments

BERTool evaluates your entries in fields of the GUI and passes data to the function as
these input arguments, in sequence:

• One value from the Eb/No range vector each time BERTool invokes the simulation
function

• The Number of errors value
• The Number of bits value

Output Arguments

Your simulation function must compute and return these output arguments, in sequence:

• Bit error rate of the simulation
• Number of bits processed when computing the BER

BERTool uses these output arguments when reporting and plotting results.
Simulation Operation

Your simulation function must perform these tasks:

• Simulate the communication system for the Eb/N0 value specified in the first input
argument.

• Stop simulating when the number of errors or the number of processed bits equals or
exceeds the corresponding threshold specified in the second or third input argument,
respectively.

• Detect whether you click Stop in BERTool and abort the simulation in that case.

Template for a Simulation Function

Use the following template when adapting your code to work with BERTool. You can
open it in an editor by entering edit bertooltemplate in the MATLAB Command
Window. The description in “Understanding the Template” on page 13-63 explains
the template's key sections, while “Using the Template” on page 13-64 indicates how
to use the template with your own simulation code. Alternatively, you can develop your
simulation function without using the template, but be sure it satisfies the requirements
described in “Requirements for Functions” on page 13-61.

Note: The template is not yet ready for use with BERTool. You must insert your own
simulation code in the places marked INSERT YOUR CODE HERE. For a complete

13-62

 Bit Error Rate (BER)

example based on this template, see “Example: Prepare a Simulation Function for Use
with BERTool” on page 13-65.

function [ber, numBits] = bertooltemplate(EbNo, maxNumErrs, maxNumBits)

% Import Java class for BERTool.

import com.mathworks.toolbox.comm.BERTool;

% Initialize variables related to exit criteria.

berVec = zeros(3,1); % Updated BER values

% --- Set up parameters. ---

% --- INSERT YOUR CODE HERE.

% Simulate until number of errors exceeds maxNumErrs

% or number of bits processed exceeds maxNumBits.

while((berVec(2) < maxNumErrs) && (berVec(3) < maxNumBits))

 % Check if the user clicked the Stop button of BERTool.

 if (BERTool.getSimulationStop)

 break;

 end

 % --- Proceed with simulation.

 % --- Be sure to update totErr and numBits.

 % --- INSERT YOUR CODE HERE.

end % End of loop

% Assign values to the output variables.

ber = berVec(1);

numBits = berVec(3);

Understanding the Template

From studying the code in the function template, observe how the function either
satisfies the requirements listed in “Requirements for Functions” on page 13-61 or
indicates where your own insertions of code should do so. In particular,

• The function has appropriate input and output arguments.
• The function includes a placeholder for code that simulates a system for the given Eb/

N0 value.
• The function uses a loop structure to stop simulating when the number of errors

exceeds maxNumErrs or the number of bits exceeds maxNumBits, whichever occurs
first.

13-63

13 Measurements

Note: Although the while statement of the loop describes the exit criteria, your
own code inserted into the section marked Proceed with simulation must
compute the number of errors and the number of bits. If you do not perform these
computations in your own code, clicking Stop is the only way to terminate the loop.

• In each iteration of the loop, the function detects when the user clicks Stop in
BERTool.

Using the Template

Here is a procedure for using the template with your own simulation code:

1 Determine the setup tasks you must perform. For example, you might want to
initialize variables containing the modulation alphabet size, filter coefficients, a
convolutional coding trellis, or the states of a convolutional interleaver. Place the
code for these setup tasks in the template section marked Set up parameters.

2 Determine the core simulation tasks, assuming that all setup work has already been
performed. For example, these tasks might include error-control coding, modulation/
demodulation, and channel modeling. Place the code for these core simulation tasks
in the template section marked Proceed with simulation.

3 Also in the template section marked Proceed with simulation, include code that
updates the values of totErr and numBits. The quantity totErr represents the
number of errors observed so far. The quantity numBits represents the number of
bits processed so far. The computations to update these variables depend on how
your core simulation tasks work.

Note: Updating the numbers of errors and bits is important for ensuring that the
loop terminates. However, if you accidentally create an infinite loop early in your
development work using the function template, click Stop in BERTool to abort the
simulation.

4 Omit any setup code that initializes EbNo, maxNumErrs, or maxNumBits, because
BERTool passes these quantities to the function as input arguments after evaluating
the data entered in the GUI.

5 Adjust your code or the template's code as necessary to use consistent variable
names and meanings. For example, if your original code uses a variable called ebn0
and the template's function declaration (first line) uses the variable name EbNo, you
must change one of the names so they match. As another example, if your original
code uses SNR instead of Eb/N0, you must convert quantities appropriately.

13-64

 Bit Error Rate (BER)

Example: Prepare a Simulation Function for Use with BERTool

This section adapts the function template given in “Template for a Simulation Function”
on page 13-62.
Preparing the Function

To prepare the function for use with BERTool, follow these steps:

1 Copy the template from “Template for a Simulation Function” on page 13-62 into
a new MATLAB file in the MATLAB Editor. Save it in a folder on your MATLAB
path using the file name bertool_simfcn.

2 From the original example, the following lines are setup tasks. They are modified
from the original example to rely on the input arguments that BERTool provides to
the function, instead of defining variables such as EbNovec and numerrmin directly.

% Set up initial parameters.

siglen = 1000; % Number of bits in each trial

M = 2; % DBPSK is binary.

% DBPSK modulation and demodulation System objects

hMod = comm.DBPSKModulator;

hDemod = comm.DBPSKDemodulator;

% AWGNChannel System object

hChan = comm.AWGNChannel('NoiseMethod', 'Signal to noise ratio (SNR)');

% ErrorRate calculator System object to compare decoded symbols to the

% original transmitted symbols.

hErrorCalc = comm.ErrorRate;

snr = EbNo; % Because of binary modulation

hChan.SNR = snr; %Assign Channel SNR

Place these lines of code in the template section marked Set up parameters.
3 From the original example, the following lines are the core simulation tasks, after all

setup work has been performed.

msg = randi([0,M-1], siglen, 1); % Generate message sequence.

txsig = step(hMod, msg); % Modulate.

hChan.SignalPower = (txsig'*txsig)/length(txsig); % Calculate and

 % assign signal power

rxsig = step(hChan,txsig); % Add noise.

decodmsg = step(hDemod, rxsig); % Demodulate.

berVec = step(hErrorCalc, msg, decodmsg); % Calculate BER

Place the code for these core simulation tasks in the template section marked
Proceed with simulation.

13-65

13 Measurements

The bertool_simfcn function is now compatible with BERTool. Note that unlike the
original example, the function here does not initialize EbNovec, define EbNo as a scalar,
or use numerrmin as the target number of errors; this is because BERTool provides input
arguments for similar quantities. The bertool_simfcn function also excludes code
related to plotting, curve fitting, and confidence intervals in the original example because
BERTool enables you to do similar tasks interactively without writing code.

Using the Prepared Function

To use bertool_simfcn in conjunction with BERTool, continue the example by
following these steps:

1 Open BERTool and go to the Monte Carlo tab.
2 Set parameters on the Monte Carlo tab as shown in the following figure.

3 Click Run.

BERTool spends some time computing results and then plots them. They do not
appear to fall along a smooth curve because the simulation required only five errors
for each value in EbNo.

13-66

 Bit Error Rate (BER)

4 To fit a curve to the series of points in the BER Figure window, select the box next to
Fit in the data viewer.

BERTool plots the curve, as shown in the following figure.

13-67

13 Measurements

Run Simulink Simulations

• “Section Overview” on page 13-68
• “Example: Using a Simulink Model with BERTool” on page 13-69
• “Varying the Stopping Criteria” on page 13-72

Section Overview

You can use BERTool in conjunction with Simulink models to generate and analyze BER
data. The Simulink model simulates the communication system whose performance
you want to study, while BERTool manages a series of simulations using the model and
collects the BER data.

Note: To use Simulink models within BERTool, you must have a Simulink license.
Communications System Toolbox software is highly recommended. The rest of this
section assumes you have a license for both Simulink and Communications System
Toolbox applications.

13-68

 Bit Error Rate (BER)

To access the capabilities of BERTool related to Simulink models, open the Monte Carlo
tab.

For further details about confidence intervals and curve fitting for simulation data, see
“Plotting Confidence Intervals” on page 13-59 and “Fitting BER Points to a Curve” on
page 13-60, respectively.

Example: Using a Simulink Model with BERTool

This example illustrates how BERTool can manage a series of simulations of a Simulink
model, and how you can vary the plot. The model is commgraycode, one of the
demonstration models included with Communications System Toolbox software. The
example assumes that you have Communications System Toolbox software installed.

To run this example, follow these steps:

1 Open BERTool and go to the Monte Carlo tab. The model's file name,
commgraycode.mdl, appears as the Simulation MATLAB file or Simulink
model parameter. (If viterbisim.m appears there, select to indicate that
Communications System Toolbox software is installed.)

2 Click Run.

13-69

13 Measurements

BERTool loads the model into memory (which in turn initializes several variables
in the MATLAB workspace), runs the simulation once for each value of Eb/N0, and
gathers BER data. BERTool creates a listing in the data viewer.

BERTool plots the data in the BER Figure window.

3 To fit a curve to the series of points in the BER Figure window, select the box next to
Fit in the data viewer.

BERTool plots the curve, as below.

13-70

 Bit Error Rate (BER)

4 To indicate the 99% confidence interval around each point in the simulation data, set
Confidence Level to 99% in the data viewer.

BERTool displays error bars to represent the confidence intervals, as below.

13-71

13 Measurements

Another example that uses BERTool to manage a series of Simulink simulations is in
“Example: Prepare a Model for Use with BERTool” on page 13-76.

Varying the Stopping Criteria

When you create a Simulink model for use with BERTool, you must set it up so that
the simulation ends when it either detects a target number of errors or processes a
maximum number of bits, whichever occurs first. To learn more about this requirement,
see “Requirements for Models” on page 13-73; for an example, see “Example: Prepare
a Model for Use with BERTool” on page 13-76.

After creating your Simulink model, set the target number of errors and the maximum
number of bits in the Monte Carlo tab of BERTool.

13-72

 Bit Error Rate (BER)

Typically, a Number of errors value of at least 100 produces an accurate error rate.
The Number of bits value prevents the simulation from running too long, especially
at large values of Eb/N0. However, if the Number of bits value is so small that the
simulation collects very few errors, the error rate might not be accurate. You can use
confidence intervals to gauge the accuracy of the error rates that your simulation
produces; the larger the confidence interval, the less accurate the computed error rate.

You can also click Stop in BERTool to stop a series of simulations prematurely.

Use Simulink Models with BERTool

• “Requirements for Models” on page 13-73
• “Tips for Preparing Models” on page 13-73
• “Example: Prepare a Model for Use with BERTool” on page 13-76

Requirements for Models

A Simulink model must satisfy these requirements before you can use it with BERTool,
where the case-sensitive variable names must be exactly as shown below:

• The channel block must use the variable EbNo rather than a hard-coded value for Eb/
N0.

• The simulation must stop when the error count reaches the value of the variable
maxNumErrs or when the number of processed bits reaches the value of the variable
maxNumBits, whichever occurs first.

You can configure the Error Rate Calculation block in Communications System
Toolbox software to stop the simulation based on such criteria.

• The simulation must send the final error rate data to the MATLAB workspace as a
variable whose name you enter in the BER variable name field in BERTool. The
variable must be a three-element vector that lists the BER, the number of bit errors,
and the number of processed bits.

This three-element vector format is supported by the Error Rate Calculation block.

Tips for Preparing Models

Here are some tips for preparing a Simulink model for use with BERTool:

• To avoid using an undefined variable name in the dialog box for a Simulink block in
the steps that follow, set up variables in the MATLAB workspace using a command
such as the one below.

13-73

13 Measurements

EbNo = 0; maxNumErrs = 100; maxNumBits = 1e8;

You might also want to put the same command in the model's preload function
callback, to initialize the variables if you reopen the model in a future MATLAB
session.

When you use BERTool, it provides the actual values based on what you enter in the
GUI, so the initial values above are somewhat arbitrary.

• To model the channel, use the AWGN Channel block in Communications System
Toolbox software with these parameters:

• Mode = Signal to noise ratio (Eb/No)
• Eb/No = EbNo

• To compute the error rate, use the Error Rate Calculation block in Communications
System Toolbox software with these parameters:

• Check Stop simulation.
• Target number of errors = maxNumErrs
• Maximum number of symbols = maxNumBits

13-74

 Bit Error Rate (BER)

• To send data from the Error Rate Calculation block to the MATLAB workspace, set
Output data to Port, attach a Signal to Workspace block from DSP System Toolbox
software, and set the latter block's Limit data points to last parameter to 1. The
Variable name parameter in the Signal to Workspace block must match the value
you enter in the BER variable name field of BERTool.

• If your model computes a symbol error rate instead of a bit error rate, use the Integer
to Bit Converter block in Communications System Toolbox software to convert
symbols to bits.

• Frame-based simulations often run faster than sample-based simulations for the
same number of bits processed. The number of errors or number of processed bits
might exceed the values you enter in BERTool, because the simulation always
processes a fixed amount of data in each frame.

• If you have an existing model that uses the AWGN Channel block using a Mode
parameter other than Signal to noise ratio (Eb/No), you can adapt the block
to use the Eb/No mode instead. To learn about how the block's different modes are

13-75

13 Measurements

related to each other, press the AWGN Channel block's Help button to view the
online reference page.

• If your model uses a preload function or other callback to initialize variables in the
MATLAB workspace upon loading, make sure before you use the Run button in
BERTool that one of these conditions is met:

• The model is not currently in memory. In this case, BERTool loads the model into
memory and runs the callback functions.

• The model is in memory (whether in a window or not), and the variables are intact.

If you clear or overwrite the model's variables and want to restore their values before
using the Run button in BERTool, you can use the bdclose function in the MATLAB
Command Window to clear the model from memory. This causes BERTool to reload
the model after you click Run. Similarly, if you refresh your workspace by issuing a
clear all or clear variables command, you should also clear the model from
memory by using bdclose all.

Example: Prepare a Model for Use with BERTool

This example starts from a Simulink model originally created as an example in the
Communications System Toolbox Getting Started documentation, and shows how to
tailor the model for use with BERTool. The example also illustrates how to compare the
BER performance of a Simulink simulation with theoretical BER results. The example
assumes that you have Communications System Toolbox software installed.

To prepare the model for use with BERTool, follow these steps, using the exact case-
sensitive variable names as shown:

1 Open the model by entering the following command in the MATLAB Command
Window.

doc_bpsk

13-76

 Bit Error Rate (BER)

2 To initialize parameters in the MATLAB workspace and avoid using undefined
variables as block parameters, enter the following command in the MATLAB
Command Window.

EbNo = 0; maxNumErrs = 100; maxNumBits = 1e8;

3 To ensure that BERTool uses the correct amount of noise each time it runs the
simulation, open the dialog box for the AWGN Channel block by double-clicking the
block. Set Es/No to EbNo and click OK. In this particular model, Es/N0 is equivalent
to Eb/N0 because the modulation type is BPSK.

4 To ensure that BERTool uses the correct stopping criteria for each iteration, open the
dialog box for the Error Rate Calculation block. Set Target number of errors to
maxNumErrs, set Maximum number of symbols to maxNumBits, and click OK.

5 To enable BERTool to access the BER results that the Error Rate Calculation block
computes, insert a Signal to Workspace block in the model and connect it to the
output of the Error Rate Calculation block.

Note: The Signal to Workspace block is in DSP System Toolbox software and is
different from the To Workspace block in Simulink.

13-77

13 Measurements

6 To configure the newly added Signal to Workspace block, open its dialog box. Set
Variable name to BER, set Limit data points to last to 1, and click OK.

13-78

 Bit Error Rate (BER)

7 (Optional) To make the simulation run faster, especially at high values of Eb/N0,
open the dialog box for the Bernoulli Binary Generator block. Select Frame-based
outputs and set Samples per frame to 1000.

8 Save the model in a folder on your MATLAB path using the file name
bertool_bpskdoc.slx.

9 (Optional) To cause Simulink to initialize parameters if you reopen this model in a
future MATLAB session, enter the following command in the MATLAB Command
Window and resave the model.

set_param('bertool_bpskdoc','preLoadFcn',...

 'EbNo = 0; maxNumErrs = 100; maxNumBits = 1e8;');

The bertool_bpskdoc model is now compatible with BERTool. To use it in conjunction
with BERTool, continue the example by following these steps:

1 Open BERTool and go to the Monte Carlo tab.
2 Set parameters on the Monte Carlo tab as shown in the following figure.

13-79

13 Measurements

3 Click Run.

BERTool spends some time computing results and then plots them.

13-80

 Bit Error Rate (BER)

4 To compare these simulation results with theoretical results, go to the Theoretical
tab in BERTool and set parameters as shown below.

13-81

13 Measurements

5 Click Plot.

BERTool plots the theoretical curve in the BER Figure window along with the earlier
simulation results.

13-82

 Bit Error Rate (BER)

Manage BER Data

• “Exporting Data Sets or BERTool Sessions” on page 13-83
• “Importing Data Sets or BERTool Sessions” on page 13-86
• “Managing Data in the Data Viewer” on page 13-88

Exporting Data Sets or BERTool Sessions

BERTool enables you to export individual data sets to the MATLAB workspace or
to MAT-files. One option for exporting is convenient for processing the data outside
BERTool. For example, to create a highly customized plot using data from BERTool,
export the BERTool data set to the MATLAB workspace and use any of the plotting

13-83

13 Measurements

commands in MATLAB. Another option for exporting enables you to reimport the data
into BERTool later.

BERTool also enables you to save an entire session, which is useful if your session
contains multiple data sets that you want to return to in a later session.

This section describes these capabilities:
Exporting Data Sets

To export an individual data set, follow these steps:

1 In the data viewer, select the data set you want to export.
2 Choose File > Export Data.

3 Set Export to to indicate the format and destination of the data.

a If you want to reimport the data into BERTool later, you must choose either
Workspace structure or MAT-file structure to create a structure in the
MATLAB workspace or a MAT-file, respectively.

A new field called Structure name appears. Set it to the name that you want
BERTool to use for the structure it creates.

If you selected Workspace structure and you want BERTool to use your
chosen variable name, even if a variable by that name already exists in the
workspace, select Overwrite variables.

b If you do not need to reimport the data into BERTool later, a convenient way
to access the data outside BERTool is to have BERTool create a pair of arrays
in the MATLAB workspace. One array contains Eb/N0 values, while the other
array contains BER values. To choose this option, set Export to to Workspace
arrays.

13-84

 Bit Error Rate (BER)

Then type two variable names in the fields under Variable names.

If you want BERTool to use your chosen variable names even if variables by
those names already exist in the workspace, select Overwrite variables.

4 Click OK. If you selected MAT-file structure, BERTool prompts you for the path
to the MAT-file that you want to create.

To reimport a structure later, see “Importing Data Sets” on page 13-87.
Examining an Exported Structure

This section briefly describes the contents of the structure that BERTool exports to the
workspace or to a MAT-file. The structure's fields are indicated in the table below. The
fields that are most relevant for you when you want to manipulate exported data are
paramsEvaled and data.

Name of Field Significance

params The parameter values in the BERTool GUI,
some of which might be invisible and hence
irrelevant for computations.

paramsEvaled The parameter values that BERTool uses
when computing the data set.

data The Eb/N0, BER, and number of bits
processed.

dataView Information about the appearance in the
data viewer. Used by BERTool for data
reimport.

cellEditabilities Indicates whether the data viewer has an
active Confidence Level or Fit entry.
Used by BERTool for data reimport.

Parameter Fields

The params and paramsEvaled fields are similar to each other, except that params
describes the exact state of the GUI whereas paramsEvaled indicates the values that
are actually used for computations. As an example of the difference, for a theoretical
system with an AWGN channel, params records but paramsEvaled omits a diversity
order parameter. The diversity order is not used in the computations because it is
relevant only for systems with Rayleigh channels. As another example, if you type

13-85

13 Measurements

[0:3]+1 in the GUI as the range of Eb/N0 values, params indicates [0:3]+1 while
paramsEvaled indicates 1 2 3 4.

The length and exact contents of paramsEvaled depend on the data set because only
relevant information appears. If the meaning of the contents of paramsEvaled is not
clear upon inspection, one way to learn more is to reimport the data set into BERTool
and inspect the parameter values that appear in the GUI. To reimport the structure,
follow the instructions in “Importing Data Sets or BERTool Sessions” on page 13-86.

Data Field

If your exported workspace variable is called ber0, the field ber0.data is a cell array
that contains the numerical results in these vectors:

• ber0.data{1} lists the Eb/N0 values.
• ber0.data{2} lists the BER values corresponding to each of the Eb/N0 values.
• ber0.data{3} indicates, for simulation or semianalytic results, how many bits

BERTool processed when computing each of the corresponding BER values.

Saving a BERTool Session

To save an entire BERTool session, follow these steps:

1 Choose File > Save Session.
2 When BERTool prompts you, enter the path to the file that you want to create.

BERTool creates a text file that records all data sets currently in the data viewer, along
with the GUI parameters associated with the data sets.

Note: If your BERTool session requires particular workspace variables (such as txsig
or rxsig for the Semianalytic tab), save those separately in a MAT-file using the save
command in MATLAB.

Importing Data Sets or BERTool Sessions

BERTool enables you to reimport individual data sets that you previously exported to a
structure, or to reload entire sessions that you previously saved. This section describes
these capabilities:

To learn more about exporting data sets or saving sessions from BERTool, see “Exporting
Data Sets or BERTool Sessions” on page 13-83.

13-86

 Bit Error Rate (BER)

Importing Data Sets

To import an individual data set that you previously exported from BERTool to a
structure, follow these steps:

1 Choose File > Import Data.

2 Set Import from to either Workspace structure or MAT-file structure. If
you select Workspace structure, type the name of the workspace variable in the
Structure name field.

3 Click OK. If you select MAT-file, BERTool prompts you to select the file that
contains the structure you want to import.

After you dismiss the Data Import dialog box (and the file selection dialog box, in the
case of a MAT-file), the data viewer shows the newly imported data set and the BER
Figure window plots it.
Opening a Previous BERTool Session

To replace the data sets in the data viewer with data sets from a previous BERTool
session, follow these steps:

1 Choose File > Open Session.

Note: If BERTool already contains data sets, it asks you whether you want to
save the current session. If you answer no and continue with the loading process,
BERTool discards the current session upon opening the new session from the file.

2 When BERTool prompts you, enter the path to the file you want to open. It must be a
file that you previously created using the Save Session option in BERTool.

After BERTool reads the session file, the data viewer shows the data sets from the file.

If your BERTool session requires particular workspace variables (such as txsig or
rxsig for the Semianalytic tab) that you saved separately in a MAT-file, you can
retrieve them using the load command in MATLAB.

13-87

13 Measurements

Managing Data in the Data Viewer

The data viewer gives you flexibility to rename and delete data sets, and to reorder
columns in the data viewer.

• To rename a data set in the data viewer, double-click its name in the BER Data Set
column and type a new name.

• To delete a data set from the data viewer, select it and choose Edit > Delete.

Note: If the data set originated from the Semianalytic or Theoretical tab, BERTool
deletes the data without asking for confirmation. You cannot undo this operation.

• To move a column in the data viewer, drag the column's heading to the left or right
with the mouse. For example, the image below shows the mouse dragging the BER
column to the left of its default position. When you release the mouse button, the
columns snap into place.

Error Rate Test Console

The Error Rate Test Console is an object capable of running simulations for
communications systems to measure error rate performance.

The Error Rate Test Console is compatible with communications systems created with a
specific API defined by the testconsole.SystemBasicAPI class. Within this class definition
you define the functionality of a communications system.

You attach a system to the Error Rate Test Console to run simulations and obtain error
rate data.

You obtain error rate results at different locations in the system under test, by defining
unique test points. Each test point contains a pair of probes that the system uses to log
data to the test console. The information you register with the test console specifies how

13-88

 Bit Error Rate (BER)

each pair of test probes compares data. For example, in a frame based system, the Error
Rate Test Console can compare transmitted and received header bits or transmitted and
received data bits. Similarly, it can compare CRC error counts to obtain frame error rates
at different points in the system. You can also configure the Error Rate Test Console to
compare data in multiple pairs of probes, obtaining multiple error rate results.

You can run simulations with as many test parameters as desired, parse the results, and
obtain parametric or surface plots by specifying which parameters act as independent
variables.

There are two main tasks associated with using the Error Rate Test Console: Creating a
System on page 13-89 and Attaching a System to the Error Rate Test Console on page
13-95.

When you run a system that is not attached to an Error Rate Test Console, the system is
running in debug mode. Debug mode is useful when evaluating or debugging the code for
the system you are designing.

To see a full-scale example on creating a system and running simulations, see Bit Error
Rate Simulations For Various Eb/No and Modulation Order Values on page 13-107.

The following sections describe the Error Rate Test Console and its functionality:

• “Creating a System” on page 13-89
• “Methods Allowing You to Communicate with the Error Rate Test Console at

Simulation Run Time” on page 13-93
• “Debug Mode” on page 13-94
• “Run Simulations Using the Error Rate Test Console” on page 13-95
• “Bit Error Rate Simulations For Various Eb/No and Modulation Order Values” on

page 13-107

Creating a System

You attach a system to the Error Rate Test Console to run simulations and obtain error
rate data. When you attach the system under test, you also register specific information
to the test console in order to define the system's test inputs, test parameters, and test
probes.

Creating a communications system for use with the Error Rate Test Console, involves the
following steps.

• Writing a system class, extending the testconsole.SystemBasicAPI class.

13-89

13 Measurements

• Writing a registration method

• Registration is test related
• Defines items such as test parameters, test probes, and test inputs

• Writing a setup method
• Writing a reset method
• Writing a run method

Methods allows the system to communicate with the test console.

To see the system file, navigate to the following location:

matlab\toolbox\comm\comm\+commtest

Then, enter the following syntax at the MATLAB command line:

edit MPSKSYSTEM.m

Writing A Register Method

Using the register method, you register test inputs, test parameters, and test probes
to the Error Rate Test Console. You register these items to the Error Rate Test Console
using the registerTestInput, registerTestParameter, and registerTestProbe
methods.

• Write a register method for every communication system you create.
• If you do not implement a register method for a system, you can still attach the

system to the Error Rate Test Console. While the test console runs the specified
number of iterations on the system, you cannot control simulation parameters or
retrieve results from the simulation.

Registering Test Inputs

In order to run simulations, the system under test requests test inputs from the Error
Rate Test Console. These test inputs provide data, driving simulations for the system
under test.

A system under test cannot request a specific input type until you attach it to the Error
Rate Test Console. Additionally, the specific input type must be registered to the test
console.

Inside the register method, you call the registerTestInput(sys,inputName)
method to register test inputs.

13-90

 Bit Error Rate (BER)

• sys represents the handle to a user-defined system object.
• inputName represents the name of the input that the system registers. This name

must coincide with the name of an available test input in the Error Rate Test Console
or an error occurs.

• 'NumTransmissions' - calling the getInput method returns the frame length. The
system itself is responsible for generating a data frame using a data source.

• 'RandomIntegerSource' - calling the getInput method returns a vector of symbols
with a length the Error Rate Test Console FrameLength property specifies. If
the system registers this source type, then it must also register a test parameter
named 'M' that corresponds to the modulation order.

Registering Test Parameters

Test parameters are the system parameters for which the Error Rate Test Console
obtains simulation results. You specify the sweep range of these parameters using the
Error Rate Test Console and obtain simulation results for different system conditions.

The system under test registers a system parameter to the Error Rate Test Console,
creating a test parameter. You register a test parameter to the Error Rate Test Console
using the registerTestParameter(sys,name,default,validRange) method.

• sys represents the handle to the user-defined system object
• name represents the parameter name that the system registers to the Error Rate Test

Console
• default specifies the default value of the test parameter – it can be a numeric value

or a character vector
• validRange specifies a range of input values for the test parameter — it can be a

1x2 vector of numeric values with upper and lower ranges or a cell array of chars (an
Enum).

A parameter of type char becomes useful when defining system conditions. For example,
in a communications system, a Channel parameter may be defined so that it takes values
such as ‘Rayleigh’, ‘Rician’, or ‘AWGN’. Depending on the Channel char value, the system
may filter transmitted data through a different channel. This allows the simulation of
the system over different channel scenarios.

If the system registers a test parameter named ‘X’ then the system must also contain a
readable property named ‘X’. If not, the registration process issues an error. This process
ensures that calling the getTestParameter method in debug mode returns the value
held by the corresponding property.

13-91

13 Measurements

Registering Test Probes

Test probes log the simulation data the Error Rate Test Console uses for computing test
metrics, such as: number of errors, number of transmissions, and error rate. To log data
into a probe, your communications system must register the probe to the Error Rate Test
Console.

You register a test probe to the Error Rate Test Console using the
registerTestProbe(sys,name,description) method.

• sys represents the handle to the user-defined system object
• name represents the name of the test probe
• description contains information about the test probes; useful for indicating what

the probe is used for. The description input is optional.

You can define an arbitrary number of probes to log test data at several points within the
system.

Writing a Setup Method

The Error Rate Test Console calls the setup method at the beginning of simulations
for each new sweep point. A sweep point is one of several sets of simulation parameters
for which the system will be simulated. Using the getTestParameter method of the
system under test, the setup method requests the current simulation sweep values from
the Error Rate Test Console and sets the various system components accordingly. The
setup method sets the system to the conditions the current test parameter sweep values
generate.

Writing a setup method for each communication system you create is not necessary. The
setup method is optional.

Writing a Reset Method

Use the reset method to reset states of various system components, such as: objects,
data buffers, or system flags. The Error Rate Test Console calls the reset method of the
system:

• at the beginning of simulations for a new sweep point. (This condition occurs when
you set the ResetMode of the Error Rate Test Console to “Reset at new simulation
point'.)

• at each simulation iteration. (This condition occurs when you set the ResetMode of
the Error Rate Test Console to 'Reset at every iteration’.)

13-92

 Bit Error Rate (BER)

Writing a reset method for each communication system you create is not mandatory.
The reset method is optional.
Writing a Run Method

Write a run method for each communication system you create. The run method includes
the core functionality of the system under test. At each simulation iteration, the Error
Rate Test Console calls the run method of the system under test.

When designing a communication system, ensure at run time that your system sets
components to the current simulation test parameter sweep values. Depending on your
unique design, at run time, the communication system:

• requests test inputs from the test console using the getInput method
• logs test data to its test probes using the setTestProbeData method
• logs user-data to the test console using the setUserData method
• Although it is recommended you do this at setup time, the system can also request the

current simulation sweep values using the getTestParameter method.

Methods Allowing You to Communicate with the Error Rate Test Console at Simulation Run Time

• “Getting Test Inputs From the Error Rate Test Console” on page 13-93
• “Getting the Current Simulation Sweep Value of a Registered Test Parameter” on

page 13-94
• “Logging Test Data to a Registered Test Probe” on page 13-94
• “Logging User-Defined Data To The Test Console” on page 13-94

Getting Test Inputs From the Error Rate Test Console

At simulation time, the communications system you design can request input data to
the Error Rate Test Console. To request a particular type of input data, the system
under test must register the specific input type to the Error Rate Test Console. The
system under test calls getInput(obj,inputName) method to request test inputs to the test
console.

• obj represents the handle of the Error Rate Test Console
• inputName represents the input that the system under test gets from the Error Rate

Test Console

For an Error Rate Test Console, 'NumTransmissions' or 'RandomDiscreetSource' are
acceptable selections for inputName.

13-93

13 Measurements

The system under test provides the following inputs:

• 'NumTransmissions' - calling the getInput method returns the frame length. The
system itself is responsible for generating a data frame using a data source.

• 'RandomIntegerSource' - calling the getInput method returns a vector of symbols
with a length the Error Rate Test Console FrameLength property specifies. If the
system registers this source type, then it must also register a test parameter named
'M' that corresponds to the modulation order.

Getting the Current Simulation Sweep Value of a Registered Test Parameter

For each simulation iteration, the system under test may require the current simulation
sweep values from the registered test parameters. To obtain these values from the Error
Rate Test console, the system under test calls the getTestParameter(sys,name)
method.

Logging Test Data to a Registered Test Probe

At simulation time, the system under test may log data to a registered test probe using
the setTestProbeData(sys,name,data) method.

• sys represents the handle to the system
• name represents the name of a registered test probe
• data represents the data the probe logs to the Error Rate Test Console.

Logging User-Defined Data To The Test Console

At simulation time, the system under test may log user-data to the Error Rate Test
Console by calling the setUserData method. This user-data passes directly to the
specific user-defined metric calculator functions. Log user-data to the Error Rate Test
Console as follows:

setUserData(sys,data)

• sys represents the handle to the system
• data represents the data the probe logs to the Error Rate Test Console.

Debug Mode

When you run a system that is not attached to an Error Rate Test Console, the system is
running in debug mode. Debug mode is useful when evaluating or debugging the code for
the system you are designing.

13-94

 Bit Error Rate (BER)

A system that extends the testconsole.SystemBasicAPI class can run by itself, without
the need to attach it to a test console. This scenario is referred to as debug mode. Debug
mode is useful when evaluating or debugging the code for the system you are designing.
For example, if you define break points when designing your system, you can run the
system in debug mode and confirm that the system runs without errors or warnings.

Implementing A Default Input Generator Function For Debug Mode

If your system registers a test input and calls the getInput method at simulation
run time then for it to run in debug mode, the system must implement a default input
generator function. This method should return an input congruent to the test console.

input = generateDefaultInput(obj)

Run Simulations Using the Error Rate Test Console

• “Creating a Test Console” on page 13-96
• “Attaching a System to the Error Rate Test Console” on page 13-96
• “Defining Simulation Conditions” on page 13-96
• “Registering a Test Point” on page 13-98
• “Getting Test Information” on page 13-99
• “Running a Simulation” on page 13-100
• “Getting Results and Plotting Data” on page 13-100
• “Parsing and Plotting Results for Multiple Parameter Simulations” on page 13-100

Running simulations with the Error Rate Test Console involves the following tasks:

• Creating a test console
• Attaching a system
• Defining simulation conditions

• Specifying stop criterion
• Specifying iteration mode
• Specifying reset mode
• Specifying sweep values

• Registering test points
• Running simulations

13-95

13 Measurements

• Getting results and plotting

Creating a Test Console

You create a test console in one of the following ways:

• h = commtest.ErrorRate returns an error rate test console, h. The error rate test
console runs simulations of a system under test to obtain error rates.

• h = commtest.ErrorRate(sys) returns an error rate test console, h, with an
attached system under test, sys.

• h = commtest.ErrorRate(sys,'PropertyName',PropertyValue,...) returns
an error rate test console, h, with an attached system under test, sys. Each specified
property, 'PropertyName', is set to the specified value, PropertyValue.

• h = commtest.ErrorRate('PropertyName',PropertyValue,...) returns
an error rate test console, h, with each specified property 'PropertyName', set to the
specified value, PropertyValue.

Attaching a System to the Error Rate Test Console

You attach a system to the Error Rate Test Console to run simulations and obtain error
rate data. There are two ways to attach a system to the Error Rate Test Console.

• To attach a system to the Error Rate Test Console, type the following at the MATLAB
command line:

attachSystem(testConsole, mySystem)

• To attach a system at construction time of an Error Rate Test Console, see Creating a
Test Console.

• mySystem is the name of the system under test

If system under test A is currently attached to the Error Rate Test Console H1, and you
call attachSystem(H2,A), then A detaches from H1 and attaches to Error Rate Test
Console H2. This causes system A to display a warning message, stating that it has
detached from H1 and attached to H2.
Defining Simulation Conditions

Stop Criterion

The Error Rate Test Console controls the simulation stop criterion using the
SimulationLimitOption property. You define the criterion to stop a simulation when
reaching either a specific number of transmissions or a specific number of errors.

13-96

 Bit Error Rate (BER)

• Setting SimulationLimitOption property to 'Number of transmissions’ stops the
simulation for each sweep parameter point when the Error Rate Test Console counts
the number of transmissions specified in MaxNumTransmissions

• Setting SimulationLimitOption property to 'Number of errors' stops the
simulation for a sweep parameter point when the Error Rate Test Consols counts the
number of errors specified in MinNumErrors. The ErrorCountTestPoint property
should be set to the name of the registered test point containing the error count being
compared to the MinNumErrors property to control the simulation length.

• Setting SimulationLimitOption property to 'Number of errors or transmissions’
stops the simulation for each sweep parameter point when the Error Rate Test
Console completes the number of transmissions specified in MaxNumTransmissions
or when obtaining the number of errors specified in MinNumErrors, whichever
happens first.

Iteration Mode

The iteration mode defines the way that the Error Rate Test Console combines test
parameter sweep values to perform simulations. The IterationMode property of the
test console controls this behavior.

• Setting IterationMode to 'Combinatorial' performs simulations for all possible
combinations of registered test parameter sweep values.

• Setting IterationMode to 'Indexed' performs simulations for all indexed sweep
value sets. The ith sweep value set consists of the ith element from every sweep value
vector for each registered test parameter. All sweep value vectors must be of equal
length, with the exception of those that are unit length.

Specifying and Obtaining Sweep Values

The Error Rate Test Console performs simulations for a set of sweep points, which
consist of combinations of sweep values specified for each registered test parameter.
The way the test console forms sweep points depends on the IterationMode settings.
The iteration mode defines the way in which sweep values for different test parameters
combine to produce simulation results.

Using the setTestParameterSweepValues method, you specify sweep values for each
test parameter that the system under test registers to the Error Rate Test Console.

setTestParameterSweepValues(obj,name,value)

where

13-97

13 Measurements

• obj represents handle to the Error Rate Test Console.
• name represents the name of the registered test parameter (this name must

correspond to a test parameter registered by the system under test or an error occurs)
• value represents the sweep values you specify for the test parameter named ‘name’.

Depending on the application, sweep values may be a vector with numeric values or
a cell array of characters. The test console issues an error if you attempt to set sweep
values that are out of the specified valid range for a test parameter (valid ranges are
defined by the system when attaching to a test console).

You obtain the list of test parameters registered by the system under test using the info
method of the Error Rate Test Console.

You obtain the sweep values for a specific registered test parameter using the
getTestParameterSweepValues method of the Error Rate Test Console.
You obtain the valid ranges of a specific registered test parameter using the
getTestParameterValidRanges method of the Error Rate Test Console.

If you do not specify sweep values for a particular test parameter, the Error Rate
Test Console. always uses the parameter’s default value to run simulations. (Default
values for test parameters are defined by the system when attaching to a test console at
registration time.)
Reset Mode

You control the reset criteria for the system under test using the SystemResetMode
property of the Error Rate Test Console.

• Setting SystemResetMode to 'Reset at new simulation point' resets the system under
test resets at the beginning of iterations for a new simulation sweep point.

• Setting SystemResetMode to 'Reset at every iteration' resets the system under test
at every simulation.

Registering a Test Point

You obtain error rate results at different points in the system under test, by defining
unique test points. Each test point groups a pair of probes that the system under test
uses to log data and the Error Rate Test Console uses to obtain data. In order to create
a test point for a pair of probes, the probes must be registered to the Error Rate Test
Console.

The Error Rate Test Console calculates error rates by comparing the data available in a
pair of probes.

13-98

 Bit Error Rate (BER)

Test points hold error and transmission counts for each sweep point simulation.

The info method displays which test points are registered to the test console.

registerTestPoint(h, name, actprobe, expprobe) registers a new test point
with name, name, to the error rate test console, h.

The test point must contain a pair of registered test probes actprobe and expprobe
whose data will be compared to obtain error rate values. actprobe contains actual data,
and expprobe contains expected data. Error rates will be calculated using a default
error rate calculator function that simply performs one-to-one comparisons of the data
vectors available in the probes.

registerTestPoint(h, name, actprobe, expprobe, fcnhandle) adds a
function handle, fcnhandle, that points to a user-defined error calculator function that
will be used instead of the default function to compare the data in probes actprobe and
exprobe, to obtain error rate results.
Writing a user-defined error calculator function

A user-defined error calculator function must comply with the following syntax:

[ecnt tcnt] = functionName(act, exp, udata) where ecnt output corresponds
to the error count, and tcnt output is the number of transmissions used to obtain the
error count. Inputs act and exp correspond to actual and expected data. The error rate
test console will set these inputs to the data available in the pair of test point probes
actprobe and expprobe previously mentioned. udata is a user data input that the
system under test may pass to the test console at run time using the setUserData
method. udata may contain data necessary to compute errors such as delays, data
buffers, and so on. The error rate test console will pass the same user data logged by
the system under test to the error calculator functions of all the registered test points.
You call the info method to see the names of the registered test points and the error rate
calculator functions associated with them, and to see the names of the registered test
probes.
Getting Test Information

Returns a report of the current test console settings.

info(h) displays:

• Test console name
• System under test name

13-99

13 Measurements

• Available test inputs
• Registered test inputs
• Registered test parameters
• Registered test probes
• Registered test points
• Metric calculator functions
• Test metrics

Running a Simulation

You run simulations by calling the run method of the Error Rate Test Console.

run(testConsole) runs a specified number of iterations of an attached system under
test for a specified set of parameter values. If a Parallel Computing Toolbox™ license
is available and a parpool is open, then you can distribute the iterations among the
available number of workers.
Getting Results and Plotting Data

Call the getResults method of the error rate test console to obtain test results.

r = getResults(testConsole)returns the simulation results, r, for the test console,
testConsole. r is an object of type testconsole.Results and contains the simulation
data for all the registered test points.

You call the getData method of results object r to get simulation results data. You
call the plot and semilogy method of the results object r to plot results data. See
testconsole.Results for more information.
Parsing and Plotting Results for Multiple Parameter Simulations

The DPSKModulationTester.mat file contains an Error Rate Test Console with a DPSK
modulation system. This system defines three test parameters:

• The bit energy to noise power spectral density ratio, EbNo (in decibels)
• The modulation order, M
• The maximum Doppler shift, MaxDopplerShift (in hertz)

These parameters have the following sweep values:

• EbNo = [-2:4] dB
• M = [2 4 8 16]

13-100

 Bit Error Rate (BER)

• MaxDopplerShift = [0 0.001 0.09] Hz

Because simulations generally take a long time to run, a simulation was run offline.
DPSKModulationTester.mat file contains a saved Error Rate Test Console with the
saved results. The simulations were run to obtain at least 2500 errors and 5e6 frame
transmissions per simulation point.

Load the simulation results by entering the following at the MATLAB command line:

load DPSKModulationTester.mat

To parse and plot results for multiple parameter simulations, perform the following
steps:

1 Using the getSweepParameterValues method, display the sweep parameter
values used in the simulation for each test parameter. For example, you display the
sweep values for MaxDopplerShift by entering:

getTestParameterSweepValues(testConsole,'MaxDopplerShift')

MATLAB returns the following result:

ans =

 0 0.0010 0.0900

2 Get the results object that parses and plots simulation results by entering the
following at the command line:

DPSKResults = getResults(testConsole)

MATLAB returns the following result:

DPSKResults =

 TestConsoleName: 'commtest.ErrorRate'

 SystemUnderTestName: 'commexample.DPSKModulation'

 IterationMode: 'Combinatorial'

 TestPoint: 'BitErrors'

 Metric: 'ErrorRate'

 TestParameter1: 'EbNo'

 TestParameter2: 'None'

3 Use the setParsingValues method to enable the plotting of error rate results
versus Eb/No for a modulation order of 4 and maximum Doppler shift of 0.001 Hz. To
do so, enter the following:.

13-101

13 Measurements

setParsingValues(DPSKResults,'M',4,'MaxDopplerShift',0.001)

4 Use the getParsingValues method to verify the current parsing values settings:

getParsingValues(DPSKResults)

MATLAB returns the following:

ans =

 EbNo: -2

 M: 4

 MaxDopplerShift: 1.0000e-003

If not specified, the parsing value for a test parameter defaults to its first sweep
value. In this example, the first sweep value for EbNo equals -2 dB. However, in
this example, TestParameter1 is set to EbNo; therefore, the Error Rate Test
Console plots results for all EbNo sweep values, not just for the value listed by the
getParsingValues method.

5 Obtain a log-scale plot of bit error rate versus Eb/No for a modulation order of 4 and
a maximum Doppler shift of 0.001 Hz:

semilogy(DPSKResults)

MATLAB generates the following figure.

13-102

 Bit Error Rate (BER)

6 Set the TestParameter2 property of the results object to 'MaxDopplerShift'. This
setting enables the plotting of multiple error rate curves versus Eb/No for each
sweep value of the maximum Doppler shift.

DPSKResults.TestParameter2 = 'MaxDopplerShift';

7 Obtain log-scale plots of bit error rate versus Eb/No for a modulation order of 2 at
each of the maximum Doppler shift sweep values.

setParsingValues(DPSKResults,'M',2)

semilogy(DPSKResults)

MATLAB generates the following figure.

13-103

13 Measurements

8 Obtain the same type of curves as in the previous step, but now for a modulation
order of 16.

setParsingValues(DPSKResults,'M',16)

semilogy(DPSKResults)

MATLAB generates the following figure.

13-104

 Bit Error Rate (BER)

9 Obtain error rate plots versus the modulation order for each Eb/No sweep value by
setting TestParameter1 equal to M and TestParameter2 equal to EbNo. You can
plot the results for the case when the maximum Doppler shift is 0 Hz by using the
setParsingValues method:

DPSKResults.TestParameter1 = 'M';

DPSKResults.TestParameter2 = 'EbNo';

setParsingValues(DPSKResults, 'MaxDopplerShift',0)

semilogy(DPSKResults)

MATLAB generates the following figure.

13-105

13 Measurements

10 Obtain a data matrix with the bit error rate values previously plotted by entering
the following:

BERMatrix = getData(DPSKResults)

MATLAB returns the following result:

BERMatrix =

 Columns 1 through 7

 0.2660 0.2467 0.2258 0.2049 0.1837 0.1628 0.1418

 0.3076 0.2889 0.2702 0.2504 0.2296 0.2082 0.1871

 0.3510 0.3384 0.3258 0.3120 0.2983 0.2837 0.2685

 0.3715 0.3631 0.3535 0.3442 0.3350 0.3246 0.3147

 Columns 8 through 13

 0.1217 0.1022 0.0844 0.0677 0.0534 0.0406

 0.1658 0.1451 0.1254 0.1065 0.0890 0.0728

 0.2531 0.2369 0.2204 0.2042 0.1874 0.1704

 0.3044 0.2945 0.2839 0.2735 0.2626 0.2512

13-106

 Bit Error Rate (BER)

The rows of the matrix correspond to the values of the test parameter defined by
the TestParameter1 property, M. The columns correspond to the values of the test
parameter defined by the TestParameter2 property, EbNo.

11 Plot the results as a 3-D data plot by entering the following:

surf(DPSKResults)

MATLAB generates the following plot:

In this case, the parameter defined by the TestParameter1 property, M, controls
the x-axis and the parameter defined by the TestParameter2 property, EbNo,
controls the y-axis.

Bit Error Rate Simulations For Various Eb/No and Modulation Order Values

Tasks for running bit error rate simulations for various En/No and modulation order
values.

• “Load the Error Rate Test Console” on page 13-108
• “Run the Simulation and Obtain Results” on page 13-109

13-107

13 Measurements

• “Generate an Error Rate Results Figure Window” on page 13-109
• “Run Parallel Simulations Using Parallel Computing Toolbox Software” on page

13-111
• “Create a System File and Attach It to the Test Console” on page 13-112
• “Configure the Error Rate Test Console and Run a Simulation” on page 13-116
• “Optimize System Performance Using Parameterized Simulations” on page 13-117

Load the Error Rate Test Console

The Error Rate Test Console is a simulation tool for obtaining error rate results. The
MATLAB software includes a data file for use with the Error Rate Test Console. You
will use the data file while performing the steps of this tutorial. The data file contains
an Error Rate Test Console object with an attached Gray coded modulation system.
This example Error Rate Test Console is configured to run bit error rate simulations for
various EbNo and modulation order, or M, values.

1 Load the file containing the Error Rate Test Console and attached Gray coded
modulation system. At the MATLAB command line, enter:

load GrayCodedModTester_EbNo_M

2 Examine the test console by displaying its properties. At the MATLAB command
line, enter:

testConsole

MATLAB returns the following output:

testConsole =

 Description: 'Error Rate Test Console'

 SystemUnderTestName: 'commexample.GrayCodedMod_EbNo_M'

 IterationMode: 'Combinatorial'

 SystemResetMode: 'Reset at new simulation point'

 SimulationLimitOption: 'Number of errors or transmissions'

 TransmissionCountTestPoint: 'DemodBitErrors'

 MaxNumTransmissions: 100000000

 ErrorCountTestPoint: 'DemodBitErrors'

 MinNumErrors: 100

Notice that SystemUnderTest is a Gray coded modulation system. Because the
SimulationLimitOption is 'Number of error or transmission', the simulation runs
until reaching 100 errors or 1e8 bits.

13-108

 Bit Error Rate (BER)

Run the Simulation and Obtain Results

In this example, you use tic and toc to compare simulation run time.

1 Run the simulation, using the tic and toc commands to measure simulation time.
At the MATLAB command line, enter:

tic; run(testConsole); toc

MATLAB returns output similar to the following:

Running simulations...

Elapsed time is 174.671632 seconds.

2 Obtain the results of the simulation using the getResults method by typing the
following at the MATLAB command line:

grayResults = getResults(testConsole)

MATLAB returns the following output:

grayResults =

 TestConsoleName: 'commtest.ErrorRate'

 SystemUnderTestName: 'commexample.GrayCodedMod_EbNo_M'

 IterationMode: 'Combinatorial'

 TestPoint: 'DemodBitErrors'

 Metric: 'ErrorRate'

 TestParameter1: 'EbNo'

 TestParameter2: 'None'

In the next section, you use the results object to obtain error values and plot error rate
curves.
Generate an Error Rate Results Figure Window

The semilogy method generates a figure containing error rate curves for the
demodulator bit error test point (DemodBitErrors) of the Gray coded modulation system.
The next figure shows an Error Rate and Eb over No curve for the demodulator bit
errors test point. This test point collects bit errors by comparing the bits the system
transmits with the bits it receives. The x-axis displays the TestParameter1 property of
grayResults, which contains EbNo values.

1 Generate the figure by entering the following at the MATLAB command line:

semilogy(grayResults)

13-109

13 Measurements

This script generates the following figure.

2 Set the TestParameter2 property to M. At the MATLAB command line, enter:

grayResults.TestParameter2 = 'M'

Previously, the simulation ran for multiple modulation order (M) values. The x-axis
displays the TestParameter1 property of grayResults, which contains EbNo
values. Although the simulation ran for multiple M values, this run contains data for
M=2.

3 Plot multiple error rate curves by entering the following at the MATLAB command
line.

semilogy(grayResults)

This script generates the following figure.

13-110

 Bit Error Rate (BER)

Run Parallel Simulations Using Parallel Computing Toolbox Software

If you have a Parallel Computing Toolbox user license and you create a parpool, the test
console runs the simulation in parallel. This approach reduces the processing time.

Note: If you do not have a Parallel Computing Toolbox user license you are unable to
perform this section of the tutorial.

1 If you have a Parallel Computing Toolbox license, run the following command to
start your default parpool:

mypool = parpool()

If you have a multicore computer, then the default parpool uses the cores as workers.
2 Using the workers, run the simulation. At the MATLAB command line, enter:

13-111

13 Measurements

tic; run(testConsole); toc

MATLAB returns output similar to the following:

4 workers available for parallel computing. Simulations ...,

will be distributed among these workers.

Running simulations...

Elapsed time is 87.449652 seconds.

Notice that the simulation runs more than three times as fast than in the previous
section.
Create a System File and Attach It to the Test Console

In the previous sections, you used an existing Gray coded modulator system file to
generate data. In this section, you create a system file and then attach it to the Error
Rate Test Console.

This example outlines the tasks necessary for converting legacy code to a system file you
can attach to the Error Rate Test Console. Use commdoc_gray as the starting point for
your system file. The files you use in this section of the tutorial reside in the following
folder:

matlab\help\toolbox\comm\examples

1 Copy the system basic API template, SystemBasicTemplate.m, as
MyGrayCodedModulation.m.

2 Rename the references to the system name in the file. First, rename the system
definition by changing the class name to MyGrayCodedModulation. Replace the
following lines, lines 1 and 2, of the file:

classdef SystemBasicTemplate < testconsole.SystemBasicAPI

%SystemBasicTemplate Template for creating a system

with these lines:

classdef MyGrayCodedModulation < testconsole.SystemBasicAPI

%MyGrayCodedModulation Gray coded modulation system

3 Rename the constructor by replacing:

function obj = SystemBasicTemplate

%SystemBasicTemplate Construct a system

with

function obj = MyGrayCodedModulation

13-112

 Bit Error Rate (BER)

%MyGrayCodedModulation Construct a Gray coded modulation system

4 Enter a description for your system. Update the obj.Description parameter with
the following information:

obj.Description = 'Gray coded modulation';

Because you are not using the reset and setup methods for this system, leave
these methods empty.

5 Copy lines 12–44 from commdoc_gray.m to the body of the run method.
6 Copy Lines 54–57 from commdoc_gray.m to the body of the run method.
7 Change EbNo to a test parameter. This change allows the system to obtain EbNo

values from the Error Rate Test Console. As a test parameter, EbNo becomes a
variable, which allows simulations to run for different values. Locate the following
line of syntax in the file:

EbNo = 10; % In dB

Replace it with:

EbNo = getTestParameter(obj,'EbNo');

8 Add modulation order, M, as a new test parameter for the simulation. Locate the
following syntax:

 M = 16; % Size of signal constellation

Replace it with:

M = getTestParameter(obj,'M');

9 Register the test parameters to the test console.

• Declare EbNo as a test parameter by placing the following line of code in the body
of the register method:

registerTestParameter(obj,'EbNo',0,[-50 50]);

The parameter defaults to 0 dB and can take values between -50 dB and 50 dB.
• Declare M as a test parameter by placing the following line of code in the body of

the register method:

registerTestParameter(obj,'M',16,[2 1024]);

The parameter defaults to 16 QAM Modulation and can take values from 2
through 1024.

10 Add EbNo and M to the test parameters list in the MyGrayCodedModulationFile file.

13-113

13 Measurements

 % Test Parameters

 properties

 EbNo = 0;

 M = 16;

 end

This adds EbNo and M to the possible test parameters list. EbNo defaults to a value
of 0 dB. M defaults to a value of 16.

11 Define test probe locations in the run method. In this example, you are calculating
end-to-end error rate. This calculation requires transmitted bits and received bits.
Add one probe for obtaining transmitted bits and one probe for received bits.

• Locate the random binary data stream creation code by searching for the
following lines:

% Create a binary data stream as a column vector.

 x = randi([0 1],n,1); % Random binary data stream

• Add a probe, TxBits, after the random binary data stream creation:

 % Create a binary data stream as a column vector.

 x = randi([0 1],n,1); % Random binary data stream

 setTestProbeData(obj,'TxBits',x);

This code sends the random binary data stream, x, to the probe TxBits.
• Locate the demodulation code by searching for the following lines:

% Demodulate signal using 16-QAM.

z = demodulate(hDemod,yRx);

• Add a probe, RxBits, after the demodulation code.

% Demodulate signal using 16-QAM.

z = demodulate(hDemod,yRx);

setTestProbeData(obj,'RxBits',z);

This code sends the binary received data stream, z, to the probe RxBits.
12 Register the test probes to the Error Rate Test Console, making it possible to obtain

data from the system. Add these probes to the function register(obj) by adding
two lines to the register method:

function register(obj)

% REGISTER Register the system with a test console

% REGISTER(H) registers test parameters and test probes of the

% system, H, with a test console.

13-114

 Bit Error Rate (BER)

 registerTestParameter(obj,'EbNo',0,[-50 50]);

 registerTestParameter(obj,'M',16,[2 1024]);

 registerTestProbe(obj,'TxBits')

 registerTestProbe(obj,'RxBits')

 end

13 Save the file. The file is ready for use with the system.
14 Create a Gray coded modulation system. At the MATLAB command line, enter:

mySystem = MyGrayCodedModulation

MATLAB returns the following output:

mySystem =

 Description: 'Gray coded modulation'

 EbNo: 0

 M: 16

15 Create an Error Rate Test Console by entering the following at the MATLAB
command line:

testConsole = commtest.ErrorRate

The MATLAB software returns the following output:

testConsole =

 Description: 'Error Rate Test Console'

 SystemUnderTestName: 'commtest.MPSKSystem'

 FrameLength: 500

 IterationMode: 'Combinatorial'

 SystemResetMode: 'Reset at new simulation point'

 SimulationLimitOption: 'Number of transmissions'

 TransmissionCountTestPoint: 'Not set'

 MaxNumTransmissions: 1000

16 Attach the system file MyGrayCodedModulation to the error rate test console by
entering the following at the MATLAB command line:

attachSystem(testConsole, mySystem)

13-115

13 Measurements

Configure the Error Rate Test Console and Run a Simulation

Configure the Error Rate Test Console to obtain error rate metrics from the attached
system. The Error Rate Test Console defines metrics as number of errors, number of
transmissions, and error rate.

1 At the MATLAB command line, enter:

registerTestPoint(testConsole, 'DemodBitErrors', 'TxBits', 'RxBits');

This line defines the test point, DemodBitErrors, and compares bits from the TxBits
probe to the bits from the RxBits probe. The Error Rate Test Console calculated
metrics for this test point.

2 Configure the Error Rate Test Console to run simulations for EbNo values. Start at 2
dB and end at 10 dB, with a step size of 2 dB and M values of 2, 4, 8, and 16. At the
MATLAB command line, enter:

setTestParameterSweepValues(testConsole, 'EbNo', 2:2:10)

setTestParameterSweepValues(testConsole, 'M', [2 4 8 16])

3 Set the simulation limit to the number of transmissions.

testConsole.SimulationLimitOption = 'Number of transmissions'

4 Set the maximum number of transmissions to 1000.

testConsole.MaxNumTransmissions = 1000

5 Configure the Error Rate Test Console so it uses the demodulator bit error test point
for determining the number of transmitted bits.

testConsole.TransmissionCountTestPoint = 'DemodBitErrors'

6 Run the simulation. At the MATLAB command line, enter:

run(testConsole)

7 Obtain the results of the simulation. At the MATLAB command line, enter:

grayResults = getResults(testConsole)

8 To obtain more accurate results, run the simulations for a given minimum number
of errors. In this example, you also limit the number of simulation bits so that the
simulations do not run indefinitely. At the MATLAB command line, enter:

testConsole.SimulationLimitOption = 'Number of errors or transmissions';

testConsole.MinNumErrors = 100;

testConsole.ErrorCountTestPoint = 'DemodBitErrors';

13-116

 Bit Error Rate (BER)

testConsole.MaxNumTransmissions = 1e8;

testConsole

9 Run the simulation by entering the following at the MATLAB command line.

run(testConsole);

10 Generate the new results in a Figure window by entering the following at the
MATLAB command line.

grayResults = getResults(testConsole);

grayResults.TestParameter2 = 'M'

semilogy(grayResults)

This script generates the following figure.

Optimize System Performance Using Parameterized Simulations

In the previous example, the system only utilizes the run method. Every time the object
calls the run method, which is every 3e4 bits for this simulation, the object sets the M

13-117

13 Measurements

and SNR values. This time interval includes: obtaining numbers from the test console,
calculating intermediate values, and setting other variables.

In contrast, the system basic API provides a setup method where the Error Rate Test
Console configures the system once for each simulation point. This change relieves the
run method from getting and setting simulation parameters, thus reducing simulation
time.

The run method of a system also creates a new modulator (hMod) and a new
demodulator (hDemod). Creating a modulator or a demodulator is much more time
consuming than just modifying a property of these objects. Create a modulator and a
demodulator object once when the system is constructed. Then, modify its properties in
the setup method of the system to speed up the simulations.

1 Save the file MyGrayCodedModulation as MyGrayCodedModulationOptimized.
2 In the MyGrayCodedModulationOptimized file, replace the constructor name and the

class definition name.

• Locate the following lines of code:

classdef MyGrayCodedModulation < testconsole.SystemBasicAPI

%MyGrayCodedModulation Gray coded modulation system

• Replace them with:

classdef MyGrayCodedModulationOptimized < testconsole.SystemBasicAPI

%MyGrayCodedModulationOptimized Gray coded modulation system

3 In the MyGrayCodedModulationOptimized file, replace the constructor name.

• Locate the following lines of code:

function obj = MyGrayCodedModulation

%MyGrayCodedModulation Construct a Gray coded modulation system

• Replace them with:

function obj = MyGrayCodedModulationOptimized

%MyGrayCodedModulationOptimized Construct a Gray

%coded modulation system

4 Move the oversampling rate definition from the run method to the setup method.

nSamp = 1; % Oversampling rate

5 Move code related to setting M to the setup method. Cut the following lines from the
run method and paste to the setup method.

13-118

 Bit Error Rate (BER)

 M = getTestParameter(obj,'M');

 k = log2(M); % Number of bits per symbol

6 In the setup method, replace M with the object property M.

obj.M = getTestParameter(obj,'M');

k = log2(obj.M); % Number of bits per symbol

This change provides access to the M value from the run method.
7 Move code related to setting EbNo to the setup method. Cut the following lines from

the run method and paste to the setup method.

EbNo = getTestParameter(obj,'EbNo');

SNR = EbNo + 10*log10(k) - 10*log10(nSamp);

8 In the setup method, replace EbNo with the object property EbNo. This change
provides access to the EbNo value from the run method.

obj.EbNo = getTestParameter(obj,'EbNo');

SNR = obj.EbNo + 10*log10(k) - 10*log10(nSamp);

9 Create a new internal variable called SNR to store the calculated SNR value. Define
the SNR property as a private property; it is not a test parameter. With this change,
the system calculates SNR in the setup method and accesses it from the run
method. Add the following lines of code the system file, after the Test Parameters
block.

%===

 % Internal variables

 properties (Access = private)

 SNR

 end

10 In the setup method, replace SNR with object property SNR.

 obj.SNR = obj.EbNo + 10*log10(k) - 10*log10(nSamp);

11 In the run method, replace M with obj.M and SNR with obj.SNR.

hMod = comm.RectangularQAMModulator(obj.M); % Create a 16-QAM modulator

yNoisy = awgn(yTx,obj.SNR,'measured');

Notice that the run method creates the QAM modulator and demodulator.
12 Move the QAM modulator and demodulator creation out of the run method. Move

following lines from the run method to the constructor (i.e the method named
MyGrayCodedModulationOptimized)

13-119

13 Measurements

%% Create Modulator and Demodulator

hMod = comm.RectangularQAMModulator(obj.M); % Create a 16-QAM modulator

hMod.BitInput = true; % Accept bits as inputs

hMod.SymbolMapping = 'Gray'; % Gray coded symbol mapping

hDemod = comm.RectangularQAMDemodulator(obj.M); % Create a 16-QAM demodulator

hDemod.BitOutput = true; % Output bits

hDemod.SymbolMapping = 'Gray'; % Gray coded symbol mapping

Create private properties called Modulator and Demodulator to store the modulator
and demodulator objects.

% Internal variables

properties (Access = private)

SNR

Modulator

Demodulator

end

13 In the constructor method, replace hMod and hDemod with the object property
obj.Modulator and obj.Demodulator respectively.

% Create a 16-QAM modulator

obj.Modulator = comm.RectangularQAMModulator(obj.M, ...

'BitInput',true,'SymbolMapping','Gray');

% Create a 16-QAM demodulator

obj.Demodulator = comm.RectangularQAMDemodulator(obj.M, ...

'BitOutput',true,'SymbolMapping','Gray');

In the run method, replace hMod and hDemod with object properties
obj.Modulator and obj.Demodulator.

y = modulate(obj.Modulator,x);

z = demodulate(obj.Demodulator,yRx);

14 Locate the setup region of the file.

function setup(obj)

% SETUP Initialize the system

% SETUP(H) gets current test parameter value(s) from the test

% console and initializes system, H, accordingly.

15 Set the M value of the modulator and demodulator by adding the following lines of
code to the setup.

obj.Modulator.M = obj.M;

13-120

 Bit Error Rate (BER)

obj.Demodulator.M = obj.M;

16 Save the file.
17 Create an optimized system. At the MATLAB command line, enter:

myOptimSystem = MyGrayCodedModulationOptimized

18 Create an Error Rate Test Console and attach the system to the test console. At the
MATLAB command line, type:

testConsole = commtest.ErrorRate(myOptimSystem)

19 At the MATLAB command line, type:

registerTestPoint(testConsole, 'DemodBitErrors', 'TxBits', 'RxBits');

This line defines the test point, DemodBitErrors, and compares bits from the TxBits
probe to the bits from the RxBits probe. The Error Rate Test Console calculated
metrics for this test point.

20 Configure the Error Rate Test Console to run simulations for EbNo values. Start at 2
dB and end at 10 dB, with a step size of 2 dB and M values of 2, 4, 8, and 16. At the
MATLAB command line, type:

setTestParameterSweepValues(testConsole, 'EbNo', 2:2:10)

setTestParameterSweepValues(testConsole, 'M', [2 4 8 16])

21 Configure the Error Rate Test Console so it uses the demodulator bit error test point
for determining the number of transmitted bits.

testConsole.TransmissionCountTestPoint = 'DemodBitErrors'

22 To obtain more accurate results, run the simulations for a given minimum number
of errors. In this example, you also limit the number of simulation bits so that the
simulations do not run indefinitely. At the MATLAB command line, type:

testConsole.SimulationLimitOption = 'Number of errors or transmissions';

testConsole.MinNumErrors = 100;

testConsole.ErrorCountTestPoint = 'DemodBitErrors';

testConsole.MaxNumTransmissions = 1e8;

testConsole

23 Run the simulation. At the MATLAB command line, type:

tic; run(testConsole); toc

MATLAB returns the following information:

13-121

13 Measurements

Running simulations...

Elapsed time is 191.748359 seconds.

Notice that these optimization changes reduce the simulation run time about 10%.
24 Generate the new results in a Figure window. At the MATLAB command line, type:

grayResults = getResults(testConsole);

grayResults.TestParameter2 = 'M'

semilogy(grayResults)

This script generates the following figure.

13-122

 Error Vector Magnitude (EVM)

Error Vector Magnitude (EVM)

Error Vector Magnitude (EVM) is a measurement of modulator or demodulator
performance in the presence of impairments. Essentially, EVM is the vector difference at
a given time between the ideal (transmitted) signal and the measured (received) signal. If
used correctly, these measurements can help in identifying sources of signal degradation,
such as: phase noise, I-Q imbalance, amplitude non-linearity and filter distortion

These types of measurements are useful for determining system performance in
communications applications. For example, determining if an EDGE system conforms to
the 3GPP radio transmission standards requires accurate RMS, EVM, Peak EVM, and
95th percentile for the EVM measurements.

Users can create the EVM object in two ways: using a default object or by defining
parameter-value pairs. As defined by the 3GPP standard, the unit of measure for RMS,
Maximum, and Percentile EVM measurements is a percentile (%). For more information,
see the EVM Measurement or comm.EVM help page.

Measuring Modulator Accuracy

• “Overview” on page 13-123
• “Structure” on page 13-124
• “References” on page 13-127

Overview

The Communications System Toolbox provides two blocks you can use for measuring
modulator accuracy: EVM Measurement and MER Measurement.

This example tests an EDGE transmitter for system design impairments using EVM
measurements. In this example, the EVM Measurements block compares an ideal
reference signal to a measured signal, and then computes RMS EVM, maximum EVM,
and percentile EVM values. According to the EDGE standard [1], the error vector
magnitude of the received signal, calculated relative to the transmitted waveform, should
not exceed the following values:

EDGE Standard Measurement Specifications [2]

Measurement Mobile Station Base Transceiver Station

 Normal Extreme Normal Extreme

13-123

13 Measurements

Measurement Mobile Station Base Transceiver Station

RMS 9% 10% 7% 8%
Peak EVM 30% 30% 22% 22%
95th Percentile EVM 15% 15% 11% 11%

This example uses the following model.

You can open this model by typing doc_evm at the MATLAB command line.

Structure

The model essentially contains three parts:

• Transmitter

13-124

 Error Vector Magnitude (EVM)

• Receiver impairments
• EVM calculation

The following sections of the tutorial contain descriptions for each part of the model.

Transmitter

The following blocks comprise the transmitter:

• Random Integer Generator

• M–PSK Modulator Baseband

• Phase/Frequency Offset

• Upsample

• Discrete FIR Filter

• I/Q Imbalance

The Random Integer Generator block simulates random data generation. The EDGE
standard specifies that the transmitter performs measurements during the useful
part of the burst – excluding tail bits – over at least 200 bursts. In this mode, the
transmitter produces 435 symbols per burst (9 additional symbols account for filter
delays). The Phase Offset block provides continuous 3π/8 phase rotation to the signal. For
synchronization purposes, the Upsample block oversamples the signal by a factor of 4.

The Discrete FIR Filter block provides a GMSK pulse linearization, the main component
in a Laurent decomposition of the GMSK modulation [3]. A helper function computes
the filter coefficients and uses a direct-form FIR digital filter to create the pulse shaping
effect. The filter normalization provides unity gain at the main tap.

The I/Q Imbalance block simulates transmitter impairments. This block adds rotation
to the signal, simulating a defect in the transmitter under test. The I/Q amplitude
imbalance is 0.5 dB, and I/Q phase imbalance is 1°.

Receiver Impairments

In this model, the Receiver Thermal Noise block represents receiver impairments. This
model assumes 290 K of thermal noise, representing imperfections of the hardware under
test.

EVM Calculation

The EVM calculation relies upon the following blocks:

13-125

13 Measurements

• Discrete FIR Filter

• Selector

• EVM Measurement

• Display

The EVM measurement block computes the vector difference between an ideal reference
signal and an impaired signal. The output of the FIR filter provides the Reference input
for the EVM block. The output of the Noise Temperature block provides the impaired
signal at the Input port of the EVM block.

While the block has different normalization options available, the EDGE standard
requires normalizing by the Average reference signal power. For illustration
purposes in this example, the EVM block outputs RMS, maximum, and percentile
measurement values.
Experimenting with the Model

1 Run the model by clicking the play button in the Simulink model window.
2 Examine the output of the EVM block and compare the measurements to the limits

in the EDGE Standard Measurement Specifications table.

In this example, the EVM Measurement block computes the following:

• Worst case RMS EVM per burst: 9.77%
• Peak EVM: 18.95%
• 95th Percentile EVM:14.76%

As a result, this simulated EDGE transmitter passes the EVM test for a Mobile
Station under extreme conditions.

3 Double-click the I/Q Imbalance block.
4 Enter 2 into I/Q Imbalance (dB) and click OK.
5 Click the Play button in the Simulink model window.
6 Examine the output of the EVM block. Then, compare the measurements to the

limits in the EDGE Standard Measurement Specifications table.

In this example, the EVM Measurement block computes the following results:

• Worst case RMS EVM per burst: 15.15%
• Peak EVM: 29.73%

13-126

 Error Vector Magnitude (EVM)

• 95th Percentile EVM: 22.55%.

These EVM values are clearly unacceptable according to the EDGE standard.
You can experiment with the other I/Q imbalance values, examine the impact on
calculations, and compare them to the values provided in the table.

References

[1] 3GPP TS 45.004, “Radio Access Networks; Modulation,” Release 7, v7.2.0, 2008-02.

[2] 3GPP TS 45.005, “Radio Access Network; Radio transmission and reception,” Release
8, v8.1.0, 2008-05.

[3] Laurent, Pierre. “Exact and approximate construction of digital phase modulation
by superposition of amplitude modulated pulses (AMP).” IEEE Transactions on
Communications. Vol. COM-34, #2, Feb. 1986, pp. 150-160.

13-127

13 Measurements

Modulation Error Ratio (MER)

Communications System Toolbox can perform Modulation Error Ratio (MER)
measurements. MER is a measure of the signal-to-noise ratio (SNR) in a digital
modulation applications. These types of measurements are useful for determining system
performance in communications applications. For example, determining if an EDGE
system conforms to the 3GPP radio transmission standards requires accurate RMS,
EVM, Peak EVM, and 95th percentile for the EVM measurements.

As defined by the DVB standard, the unit of measure for MER is decibels (dB). For
consistency, the unit of measure for Minimum MER and Percentile MER measurements
is also in decibels. For more information, see the comm.MER help page.

13-128

 Adjacent Channel Power Ratio (ACPR)

Adjacent Channel Power Ratio (ACPR)

Adjacent channel power ratio (ACPR) calculations (also known as adjacent channel
leakage ratio (ACLR)), characterize spectral regrowth in a communications system
component, such as a modulator or an analog front end. Amplifier nonlinearity causes
spectral regrowth. ACPR calculations determine the likelihood that a given system
causes interference with an adjacent channel.

Many transmission standards, such as IS-95, CDMA, WCDMA, 802.11, and
Bluetooth, contain a definition for ACPR measurements. Most standards define ACPR
measurements as the ratio of the average power in the main channel and any adjacent
channels. The offset frequencies and measurement bandwidths (BWs) you use when
obtaining measurements depends on which specific industry standard you are using.
For instance, measurements for CDMA amplifiers involve two offsets (from the carrier
frequency) of 885 kHz and 1.98 MHz, and a measurement BW of 30 KHz.

For more information, see the comm.ACPR help page.

Obtain ACPR Measurements

Communications System Toolbox contains the comm.ACPR System object. In this tutorial,
you obtain ACPR measurements using a WCDMA communications signal, according to
the 3GPP™ TS 125.104 standard.

This example uses baseband WCDMA sample signals at the input and output of
a nonlinear amplifier. The WCDMASignal.mat file contains sample data for use
with the tutorial. This file divides the data into 25 signal snapshots of 7e3 samples
each and stores them in the columns of data matrices, dataBeforeAmplifier and
dataAfterAmplifier.

The WCDMA specification requires that you obtain all measurements using a 3.84 MHz
sampling frequency.

Create comm.ACPR System Object and Set Up Measurements

1 Define the sample rate, load the WCDMA file, and get the data by entering the
following at the MATLAB command line:

% System sampling frequency, 3.84 MHz chip rate, 8 samples per chip

SampleRate = 3.84e6*8;

load WCDMASignal.mat

13-129

13 Measurements

% Use the first signal snapshot

txSignalBeforeAmplifier = dataBeforeAmplifier(:,1);

txSignalAfterAmplifier = dataAfterAmplifier(:,1);

2 Create the comm.ACPR System object and specify the sampling frequency.

hACPR = comm.ACPR('SampleRate', SampleRate)

The System object presents the following information:

 NormalizedFrequency: false

 SampleRate: 30720000

 MainChannelFrequency: 0

 MainMeasurementBandwidth: 50000

 AdjacentChannelOffset: [-100000 100000]

 AdjacentMeasurementBandwidth: 50000

 MeasurementFilterSource: 'None'

 SpectralEstimation: 'Auto'

 FFTLength: 'Next power of 2'

 MaxHold: false

 PowerUnits: 'dBm'

 MainChannelPowerOutputPort: false

 AdjacentChannelPowerOutputPort: false

3 Specify the main channel center frequency and measurement bandwidth.

Specify the main channel center frequency using the MainChannelFrequency
property. Then, specify the main channel measurement bandwidth using the
MainMeasurementBandwidth property.

For the baseband data you are using, the main channel center frequency is at 0 Hz.
The WCDMA standard specifies that you obtain main channel power using a 3.84-
MHz measurement bandwidth. Specify these by typing the following.

hACPR.MainChannelFrequency = 0;

hACPR.MainMeasurementBandwidth = 3.84e6;

4 Specify adjacent channel offsets and measurement bandwidths.

The WCDMA standard specifies ACPR limits for four adjacent channels, located at
5, -5, 10, -10 MHz away from the main channel center frequency. In all cases, you
obtain adjacent channel power using a 3.84-MHz bandwidth. Specify the adjacent
channel offsets and measurement bandwidths using the AdjacentChannelOffset
and AdjacentMeasurementBandwidth properties.

hACPR.AdjacentChannelOffset = [-10 -5 5 10]*1e6;

13-130

 Adjacent Channel Power Ratio (ACPR)

hACPR.AdjacentMeasurementBandwidth = 3.84e6;

Notice that if the measurement bandwidths for all the adjacent channels are equal,
you specify a scalar value. If measurement bandwidths are different, you specify a
vector of measurement bandwidths with a length equal to the length of the offset
vector.

5 Set the MainChannelPowerOutputPort and
AdjacentChannelPowerOutputPort properties to true by entering the following
at the MATLAB command line:

hACPR.MainChannelPowerOutputPort = true

hACPR.AdjacentChannelPowerOutputPort = true

6 Create a comm.ACPR System object to measure the amplifier output.

hACPRoutput = clone(hACPR);

Obtain the ACPR Measurements

You obtain ACPR measurements by calling the step method of comm.ACPR. You can also
obtain the power measurements for the main and adjacent channels. The PowerUnits
property specifies the unit of measure. The property value defaults to dBm (power ratio
referenced to one milliwatt (mW)).

1 Obtain the ACPR measurements at the amplifier input:

[ACPR mainChannelPower adjChannelPower] = ...,

step(hACPR,txSignalBeforeAmplifier)

The comm.ACPR System object produces the following output measurement data:

ACPR =

 -68.6668 -54.9002 -55.0653 -68.4604

mainChannelPower =

 29.5190

adjChannelPower =

 -39.1477 -25.3812 -25.5463 -38.9414

13-131

13 Measurements

2 Obtain the ACPR measurements at the amplifier output:

[ACPR mainChannelPower adjChannelPower] = ...,

step(hACPRoutput,txSignalAfterAmplifier)

The comm.ACPR System object produces the following input measurement data:

ACPR =

 -42.1625 -27.0912 -26.8785 -42.4915

mainChannelPower =

 40.6725

adjChannelPower =

 -1.4899 13.5813 13.7941 -1.8190

Notice the increase in ACPR values at the output of the amplifier. This increase
reflects distortion due to amplifier nonlinearity. The WCDMA standard specifies that
ACPR values be below -45 dB at +/- 5 MHz offsets, and below -50 dB at +/- 10 MHz
offsets. In this example, the signal at the amplifier input meets the specifications
while the signal at the amplifier output does not.

Specifying a Measurement Filter

The WCDMA standard specifies that you obtain ACPR measurements using a root-
raised-cosine filter. It also states that you measure both the main channel power and
adjacent channel powers using a matched root-raised-cosine (RRC) filter with rolloff
factor 0.22. You specify the measurement filter using the MeasurementFilter property.
This property value defaults to an all-pass filter with unity gain.

The filter must be an FIR filter, and its response must center at 0 Hz. The ACPR object
automatically shifts and applies the filter at each of the specified main and adjacent
channel bands. (The power measurement still falls within the bands specified by the
MainMeasurementBandwidth, and AdjacentMeasurementBandwidth properties.)

The WCDMASignal.mat file contains data that was obtained using a 96 tap filter with a
rolloff factor of 0.22.

1 Create the filter (using rcosdesign, from the Signal Processing Toolbox software)
and obtain measurements by entering the following at the MATLAB command line:

13-132

 Adjacent Channel Power Ratio (ACPR)

% Scale for 0 dB passband gain

measFilt = rcosdesign(0.22,16,8)/sqrt(8);

2 Set the filter you created in the previous step as the measurement filter for the
ACPR object.

release(hACPR);

hACPR.MeasurementFilterSource = 'Property';

hACPR.MeasurementFilter = measFilt;

3 Implement the same filter at the amplifier output by cloning the comm.ACPR System
object.

hACPRoutput = clone(hACPR)

4 Obtain the ACPR power measurements at the amplifier input.

ACPR = step(hACPR,txSignalBeforeAmplifier)

The comm.ACPR System object produces the following measurement data:

ACPR =

 -71.4648 -55.5514 -55.9476 -71.3909

5 Obtain the ACPR power measurements at the amplifier output.

ACPRoutput = step(hACPRoutput,txSignalAfterAmplifier)

The comm.ACPR System object produces the following measurement data:

ACPR =

 -42.2364 -27.2242 -27.0748 -42.5810

Control the Power Spectral Estimator

By default, the ACPR object measures power uses a Welch power spectral estimator with
a Hamming window and zero percent overlap. The object uses a rectangle approximation
of the integral for the power spectral density estimates in the measurement bandwidth of
interest. If you set SpectralEstimatorOption to 'User defined' several properties become
available, providing you control of the resolution, variance, and dynamic range of the
spectral estimates.

1 Enable the SegmentLength, OverlapPercentage, and WindowOption properties by
entering the following at the MATLAB command line:

release(hACPRoutput)

13-133

13 Measurements

hACPRoutput.SpectralEstimation = 'Specify window parameters'

This change allows you to customize the spectral estimates for obtaining power
measurements. For example, you can set the spectral estimator segment length to
1024 and increase the overlap percentage to 50%, reducing the consequent variance
increase. You can also choose a window with larger side lobe attenuation (compared
to the default Hamming window).

2 Create a spectral estimator with a 'Chebyshev' window and a side lobe attenuation of
200 dB.

hACPRoutput.SegmentLength = 1024;

hACPRoutput.OverlapPercentage = 50;

% Choosing a Chebyshev window enables a SidelobeAtten property

% you can use to set the side lobe attenuation of the window.

hACPRoutput.Window = 'Chebyshev';

hACPRoutput.SidelobeAttenuation = 200;

3 Call the step method to obtain the ACPR power measurements at the amplifier
output.

ACPRoutput = step(hACPRoutput,txSignalAfterAmplifier)

The ACPR object produces the following measurement data:

ACPR =

 -44.9399 -30.7136 -30.7670 -44.4450

Measure Power Using the Max-Hold Option.

Some communications standards specify using max-hold spectrum power measurements
when computing ACPR values. Such calculations compare the current power spectral
density vector estimation to the previous max-hold accumulated power spectral density
vector estimation. When obtaining max-hold measurements, the object obtains the power
spectral density vector estimation using the current input data. It obtains the previous
max-hold accumulated power spectral density vector from the previous call to the step
method. The object uses the maximum values at each frequency bin for calculating
average power measurements. A call to the reset method clears the max-hold spectrum.

1 Accumulate max-hold spectra for 25 amplifier output data snapshots and get ACPR
measurements by typing the following at the MATLAB command line:

for idx = 1:24

 step(hACPRoutput,dataAfterAmplifier(:,idx));

end

13-134

 Adjacent Channel Power Ratio (ACPR)

ACPRoutput = step(hACPRoutput,dataAfterAmplifier(:,25))

The ACPR object produces the following output data:

ACPR =

 -43.1123 -26.6964 -27.0009 -42.4803

Plotting the Signal Spectrum

Use the MATLAB software to plot the power spectral density of the WCDMA signals
at the input and output of the nonlinear amplifier. The plot allows you to visualize
the spectral regrowth effects intrinsic to amplifier nonlinearity. Notice how the
measurements reflect the spectral regrowth. (Note: the following code is just for
visualizing signal spectra; it has nothing to do with obtaining the ACPR measurements).

win = hamming(1024);

[PSD1,F] = pwelch(txSignalBeforeAmplifier,win,50,1024,SampleRate,'centered');

[PSD2,F] = pwelch(txSignalAfterAmplifier,win,50,1024,SampleRate,'centered');

plot(F,10*log10(PSD1))

hold on

grid on

plot(F,10*log10(PSD2),'g')

legend('Amplifier input', 'Amplifier output')

13-135

13 Measurements

13-136

 Complementary Cumulative Distribution Function CCDF

Complementary Cumulative Distribution Function CCDF

The Communications System Toolbox software measures the probability of a signal's
instantaneous power to be a specified level above its average power using the
comm.CCDF System object.

13-137

13 Measurements

Selected Bibliography for Measurements

[1] Proakis, J. G., Digital Communications, 4th Ed., McGraw-Hill, 2001.

[2] Simon, M. K., and Alouini, M. S., Digital Communication over Fading Channels – A
Unified Approach to Performance Analysis, 1st Ed., Wiley, 2000.

[3] Simon, M. K , “On the bit-error probability of differentially encoded QPSK and offset
QPSK in the presence of carrier synchronization”, IEEE Trans. Commun., vol. 54,
May 2006, pp. 806-812.

[4] Lee, P. J., “Computation of the bit error rate of coherent M-ary PSK with Gray code
bit mapping”, IEEE Trans. Commun., Vol. COM-34, Number 5, pp. 488-491,
1986.

[5] Cho, K., and Yoon, D., “On the general BER expression of one- and two-dimensional
amplitude modulations”, IEEE Trans. Commun., vol. 50, no. 7, July 2002, pp.
1074-1080.

[6] Simon, M. K , Hinedi, S. M., and Lindsey, W. C., Digital Communication Techniques –
Signal Design and Detection, Prentice-Hall, 1995.

[7] Sklar, B., Digital Communications, 2nd Ed., Prentice-Hall, 2001.

[8] Lindsey, W. C., “Error probabilities for Rician fading multichannel reception of binary
and N-ary signals”, IEEE Trans. Inform. Theory, Vol. IT-10, pp. 339-350, 1964.

[9] Odenwalder, J. P., Error Control Coding Handbook (Final report), Linkabit Corp., 15
July 1976.

[10] Gulliver, T. A., “Matching Q-ary Reed-Solomon codes with M-ary modulation,” IEEE
Trans. Commun., vol. 45, no. 11, Nov. 1997, pp. 1349-1353.

[11] Jeruchim, Michel C., Philip Balaban, and K. Sam Shanmugan, Simulation of
Communication Systems, New York, Plenum Press, 1992.

[12] Frenger, Pal, Pal Orten, and Tony Ottosson, “Convolutional Codes with Optimum
Distance Spectrum,” IEEE Communications Letters, Vol. 3, #11, Nov. 1999, pp.
317-319

13-138

14

Filtering Section

• “Filtering” on page 14-2
• “Group Delay” on page 14-5
• “Pulse Shaping Using a Raised Cosine Filter” on page 14-7
• “Design Raised Cosine Filters Using MATLAB Functions” on page 14-13
• “Filter Using Simulink Raised Cosine Filter Blocks” on page 14-15
• “Design Raised Cosine Filters in Simulink” on page 14-21
• “Reduce ISI Using Raised Cosine Filtering” on page 14-24
• “Find Delay for Encoded and Filtered Signal” on page 14-29

14 Filtering Section

Filtering

The Communications System Toolbox software includes several functions, objects, and
blocks that can help you design and use filters. Other filtering capabilities are in the
Signal Processing Toolbox and the DSP System Toolbox. The sections of this chapter are
as follows:

In this section...

“Filter Features” on page 14-2
“Selected Bibliography Filtering” on page 14-4

For an example involving raised cosine filters, type showdemo rcosdemo.

Filter Features

Without propagation delays, both Hilbert filters and raised cosine filters are noncausal.
This means that the current output depends on the system's future input. In order
to design only realizable filters, the hilbiir function delays the input signal before
producing an output. This delay, known as the filter's group delay, is the time between
the filter's initial response and its peak response. The group delay is defined as

-
d

dw
q w()

where θ represents the phase of the filter and ω represents the frequency in radians per
second. This delay is set so that the impulse response before time zero is negligible and
can safely be ignored by the function.

For example, the Hilbert filter whose impulse is shown below uses a group delay of one
second. In the figure, the impulse response near time 0 is small and the large impulse
response values occur near time 1.

14-2

 Filtering

Filtering tasks that blocks in the Communications System Toolbox support include:

• “Filter Using Simulink Raised Cosine Filter Blocks” on page 14-15. Raised cosine
filters are very commonly used for pulse shaping and matched filtering. The following
block diagram illustrates a typical use of raised cosine filters.

• Shaping a signal using ideal rectangular pulses.
• Implementing an integrate-and-dump operation or a windowed integrator. An

integrate-and-dump operation is often used in a receiver model when the system's
transmitter uses an ideal rectangular-pulse model. Integrate-and-dump can also be
used in fiber optics and in spread-spectrum communication systems such as CDMA
(code division multiple access) applications.

Additional filtering capabilities exist in the Filter Designs and Multirate Filters libraries
of the DSP System Toolbox product.

For more background information about filters and pulse shaping, see the works listed in
the “Selected Bibliography Filtering” on page 14-4.

14-3

14 Filtering Section

Selected Bibliography Filtering

[1] Korn, Israel, Digital Communications, New York, Van Nostrand Reinhold, 1985.

[2] Oppenheim, Alan V., and Ronald W. Schafer, Discrete-Time Signal Processing,
Englewood Cliffs, NJ, Prentice Hall, 1989.

[3] Proakis, John G., Digital Communications, 3rd ed., New York, McGraw-Hill, 1995.

[4] Rappaport, Theodore S., Wireless Communications: Principles and Practice, Upper
Saddle River, NJ, Prentice Hall, 1996.

[5] Sklar, Bernard, Digital Communications: Fundamentals and Applications, Englewood
Cliffs, NJ, Prentice Hall, 1988.

14-4

 Group Delay

Group Delay

The raised cosine filter blocks in the commfilt2 library implement realizable filters by
delaying the peak response. This delay, known as the filter’s group delay, is the length
of time between the filter's initial response and its peak response. The filter blocks in
this library have a Filter span in symbols parameter, which is twice the group delay in
symbols.

For example, the square-root raised cosine filter whose impulse response shown in the
following figure uses a Filter span in symbols parameter of 8 in the filter block. In the
figure, the initial impulse response is small and the peak impulse response occurs at the
fourth symbol.

Implications of Delay for Simulations

A filter block’s group delay has implications for other parts of your model. For example,
suppose you compare the symbol streams marked Symbols In and Symbols Out in the
schematics shown on the “Filtering” on page 14-2 page by plotting or computing an
error rate. Use one of these methods to make sure you are comparing symbols that truly
correspond to each other:

• Use the Delay block in DSP System Toolbox to delay the Symbols In signal, thus
aligning it with the Symbols Out signal. Set the Delay parameter equal to the filter’s

14-5

14 Filtering Section

group delay (or the sum of both values, if your model uses a pair of square root raised
cosine filter blocks). The following figure illustrates this usage.

Symbols in Symbols out

Rx

Square Root
Raised Cosine
Receive Filter

Channel
Square Root

Raised Cosine
Transmit Filter

Tx
Delay

Error Rate
Calculation

• Use the Align Signals block to align the two signals.
• When using the Error Rate Calculation block to compare the two signals, increase

the Receive delay parameter by the group delay value (or the sum of both values, if
your model uses a pair of square-root raised cosine filter blocks). The Receive delay
parameter might include other delays as well, depending on the contents of your
model.

For more information about how to manage delays in a model, see “Delays” on page 2-6.

14-6

 Pulse Shaping Using a Raised Cosine Filter

Pulse Shaping Using a Raised Cosine Filter

Filter a 16-QAM signal using a pair of square root raised cosine matched filters. Plot the
eye diagram and scatter plot of the signal. After passing the signal through an AWGN
channel, calculate the number of bit errors.

Set the simulation parameters.

M = 16; % Modulation order

k = log2(M); % Bits/symbol

n = 20000; % Transmitted bits

nSamp = 4; % Samples per symbol

EbNo = 10; % Eb/No (dB)

Create a rectangular QAM modulator and demodulator System object™ pair that
operates on binary data.

qamModulator = comm.RectangularQAMModulator(M,'BitInput',true);

qamDemodulator = comm.RectangularQAMDemodulator(M,'BitOutput',true);

Set the filter parameters.

span = 10; % Filter span in symbols

rolloff = 0.25; % Rolloff factor

Create the raised cosine transmit and receive filters using the previously defined
parameters.

txfilter = comm.RaisedCosineTransmitFilter('RolloffFactor',rolloff, ...

 'FilterSpanInSymbols',span,'OutputSamplesPerSymbol',nSamp);

rxfilter = comm.RaisedCosineReceiveFilter('RolloffFactor',rolloff, ...

 'FilterSpanInSymbols',span,'InputSamplesPerSymbol',nSamp, ...

 'DecimationFactor',nSamp);

Plot the impulse response of hTxFilter.

fvtool(txfilter,'impulse')

14-7

14 Filtering Section

Calculate the delay through the matched filters. The group delay is half of the filter span
through one filter and is, therefore, equal to the filter span for both filters. Multiply by
the number of bits per symbol to get the delay in bits.

filtDelay = k*span;

Create an error rate counter System object. Set the ReceiveDelay property to account
for the delay through the matched filters.

errorRate = comm.ErrorRate('ReceiveDelay',filtDelay);

Generate binary data.

x = randi([0 1],n,1);

14-8

 Pulse Shaping Using a Raised Cosine Filter

Modulate the data.

modSig = qamModulator(x);

Filter the modulated signal.

txSig = txfilter(modSig);

Plot the eye diagram of the first 1000 samples.

eyediagram(txSig(1:1000),nSamp)

14-9

14 Filtering Section

Calculate the signal-to-noise ratio (SNR) in dB given EbNo. Pass the transmitted signal
through the AWGN channel using the awgn function.

SNR = EbNo + 10*log10(k) - 10*log10(nSamp);

noisySig = awgn(txSig,SNR,'measured');

14-10

 Pulse Shaping Using a Raised Cosine Filter

Filter the noisy signal and display its scatter plot.

rxSig = rxfilter(noisySig);

scatterplot(rxSig)

Demodulate the filtered signal and calculate the error statistics. The delay through the
filters is accounted for by the ReceiveDelay property in errorRate .

z = qamDemodulator(rxSig);

errStat = errorRate(x,z);

fprintf('\nBER = %5.2e\nBit Errors = %d\nBits Transmitted = %d\n',...

 errStat)

14-11

14 Filtering Section

BER = 1.85e-03

Bit Errors = 37

Bits Transmitted = 19960

14-12

 Design Raised Cosine Filters Using MATLAB Functions

Design Raised Cosine Filters Using MATLAB Functions

In this section...

“Section Overview” on page 14-13
“Example Designing a Square-Root Raised Cosine Filter” on page 14-13

Section Overview

The rcosdesign function designs (but does not apply) filters of these types:

• Finite impulse response (FIR) raised cosine filter
• FIR square-root raised cosine filter

The function returns the FIR coefficients as output.

Example Designing a Square-Root Raised Cosine Filter

For example, the command below designs a square-root raised cosine FIR filter with a
rolloff of 0.25, a filter span of 6 symbols, and an oversampling factor of 2.

sps = 2;

num = rcosdesign(0.25, 6, sps)

num =

 Columns 1 through 7

 -0.0265 0.0462 0.0375 -0.1205 -0.0454 0.4399 0.7558

 Columns 8 through 13

 0.4399 -0.0454 -0.1205 0.0375 0.0462 -0.0265

Here, the vector num contains the coefficients of the filter, in ascending order of powers of
z-1.

You can use the upfirdn function to filter data with a raised cosine filter generated by
rcosdesign. The following code illustrates this usage:

d = 2*randi([0 1], 100, 1)-1;

f = upfirdn(d, num, sps);

eyediagram(f(7:200),sps)

14-13

14 Filtering Section

The eye diagram shows an imperfect eye because num characterizes a square-root filter.

14-14

 Filter Using Simulink Raised Cosine Filter Blocks

Filter Using Simulink Raised Cosine Filter Blocks

The Raised Cosine Transmit Filter and Raised Cosine Receive Filter blocks are designed
for raised cosine filtering. Each block can apply a square-root raised cosine filter or a
normal raised cosine filter to a signal. You can vary the rolloff factor and span of the
filter.

The Raised Cosine Transmit Filter and Raised Cosine Receive Filter blocks are tailored
for use at the transmitter and receiver, respectively. The transmit filter outputs an
upsampled (interpolated) signal, while the receive filter expects its input signal to be
upsampled. The receive filter lets you choose whether to have the block downsample
(decimate) the filtered signal before sending it to the output port.

Both raised cosine filter blocks introduce a propagation delay, as described in “Group
Delay” on page 14-5.

Combining Two Square-Root Raised Cosine Filters

This model shows how to split the filtering equally between the transmitter's filter and
the receiver's filter by using a pair of square root raised cosine filters.

The use of two matched square root raised cosine filters is equivalent to a single normal
raised cosine filter. To see this illustrated, load the model doc_rrcfiltercompare by typing
the following at the MATLAB command line.

doc_rrcfiltercompare

14-15

14 Filtering Section

The filters share the same span and use the same number samples per symbol but the
filters on the upper path have a square root shape while the filter on the lower path has
the normal shape.

Run the model and observe the eye and constellation diagrams. The performance is
nearly identical for the two methods. Note that the limited impulse response of practical
square root raised cosine filters causes a slight difference between the response of two
cascaded square root raised cosine filters and the response of one raised cosine filter.

14-16

 Filter Using Simulink Raised Cosine Filter Blocks

14-17

14 Filtering Section

14-18

 Filter Using Simulink Raised Cosine Filter Blocks

14-19

14 Filtering Section

14-20

 Design Raised Cosine Filters in Simulink

Design Raised Cosine Filters in Simulink

This example illustrates a typical setup in which a transmitter uses a square root raised
cosine filter to perform pulse shaping and the corresponding receiver uses a square
root raised cosine filter as a matched filter. The example plots an eye diagram from the
filtered received signal.

To open the model, enter doc_rcfilters at the MATLAB command line. The following
is a summary of the block parameters used in the model:

• Random Integer Generator, in the Random Data Sources sublibrary of the Comm
Sources library:

• M-ary number is set to 16.
• Sample time is set to 1/100.

14-21

14 Filtering Section

• Frame-based outputs is selected.
• Samples per frame is set to 100.

• Rectangular QAM Modulator Baseband, in the AM sublibrary of the Digital
Baseband sublibrary of Modulation:

• Normalization method is set to Peak Power.
• Peak power is set to 1.

• Raised Cosine Transmit Filter, in the Comm Filters library:

• Filter span in symbols is set to 8.
• Rolloff factor is set to 0.2

• AWGN Channel, in the Channels library:

• Mode is set to Signal to noise ratio (SNR).
• SNR is set to 40.
• Input signal power is set to 0.0694. The power gain of a square-root raised

cosine transmit filter is 1

N
, where N represents the upsampling factor of the

filter. The input signal power of filter is 0.5556. Because the Peak power of the
16-QAM Rectangular modulator is set to 1 watt, it translates to an average power

of 0.5556. Therefore, the output signal power of filter is 0 5556

8
0 0694

.
.= .

• Raised Cosine Receive Filter, in the Comm Filters library:

• Filter span in symbols is set to 8.
• Rolloff factor is set to 0.2.

• Eye Diagram, in the Comm Sinks library:

• Symbols per trace is set to 2.
• Traces to display is set to 100.

Running the simulation produces the following eye diagram. The eye diagram has two
widely opened “eyes” that indicate appropriate instants at which to sample the filtered
signal before demodulating. This illustrates the absence of intersymbol interference at
the sampling instants of the received waveform.

14-22

 Design Raised Cosine Filters in Simulink

The large signal-to-noise ratio in this example produces an eye diagram with large eye
openings. If you decrease the SNR parameter in the AWGN Channel block, the eyes in
the diagram will close more.

14-23

14 Filtering Section

Reduce ISI Using Raised Cosine Filtering

Employ raised cosine filtering to reduce inter-symbol interference (ISI) that results from
a nonlinear amplifier.

Create a 16-QAM modulator having an average power of 1.

qamModulator = comm.RectangularQAMModulator('ModulationOrder',16, ...

 'NormalizationMethod','Average power','AveragePower',1);

Create square root raised cosine filter objects.

txfilter = comm.RaisedCosineTransmitFilter;

rxfilter = comm.RaisedCosineReceiveFilter;

Create a Memoryless Nonlinearity System object to introduce nonlinear behavior to the
modulated signal. Using name-value pairs, set the Method property to Saleh model to
emulate a high power amplifier.

hpa = comm.MemorylessNonlinearity('Method','Saleh model', ...

 'InputScaling',-10,'OutputScaling',0);

Generate random integers and apply 16-QAM modulation.

x = randi([0 15],1000,1);

modSig = qamModulator(x);

Plot the eye diagram of the modulated signal. At time 0, there are three distinct "eyes"
for 16-QAM modulation.

eyediagram(modSig,2)

14-24

 Reduce ISI Using Raised Cosine Filtering

Amplify the modulated signal using hpa.

txSigNoFilt = hpa(modSig);

Plot the eye diagram of the amplified signal without RRC filtering. At time 0, there are
multiple eyes. This is a result of inter-symbol interference from the nonlinear amplifier.

14-25

14 Filtering Section

eyediagram(txSigNoFilt,2)

Filter the modulated signal using the RRC transmit filter.

filteredSig = txfilter(modSig);

14-26

 Reduce ISI Using Raised Cosine Filtering

Release hpa and amplify the filtered signal. The release function is needed because the
input signal dimensions change due to filter interpolation.

release(hpa)

txSig = hpa(filteredSig);

Filter txSig using the RRC matched receive filter.

rxSig = rxfilter(txSig);

Plot the eye digram of the signal after the application of the receive filter. There are once
again three distinct eyes as the matched RRC filters mitigate ISI.

eyediagram(rxSig,2)

14-27

14 Filtering Section

14-28

 Find Delay for Encoded and Filtered Signal

Find Delay for Encoded and Filtered Signal

Determine the delay for a convolutionally encoded and filtered link. Use the delay to
accurately determine the number of bit errors.

Create a QPSK modulator and demodulator pair. Specify the objects to operate on bits.

qpskmod = comm.QPSKModulator('BitInput',true);

qpskdemod = comm.QPSKDemodulator('BitOutput',true);

Create a raised cosine transmit and receive filter pair.

txfilt = comm.RaisedCosineTransmitFilter;

rxfilt = comm.RaisedCosineReceiveFilter;

Create a convolutional encoder and Viterbi decoder pair.

convEnc = comm.ConvolutionalEncoder;

vitDec = comm.ViterbiDecoder('InputFormat','Hard');

Generate random binary data. Convolutionally encode the data.

txData = randi([0 1],1000,1);

encData = convEnc(txData);

Modulate the encoded data. Pass the modulated data through the raised cosine transmit
filter.

modSig = qpskmod(encData);

txSig = txfilt(modSig);

Pass the filtered signal through an AWGN channel.

rxSig = awgn(txSig,20,'measured');

Filter and then demodulate the received signal.

filtSig = rxfilt(rxSig);

demodSig = qpskdemod(filtSig);

Decode the demodulated data.

rxData = vitDec(demodSig);

Find the delay between the transmitted and received binary data by using the
finddelay function.

14-29

14 Filtering Section

td = finddelay(txData,rxData)

td =

 44

Confirm that the computed delay matches the expected delay, which is equal to the sum
of the group delay of the matched filters and the traceback depth of the Viterbi decoder.

tdexpected = (txfilt.FilterSpanInSymbols + rxfilt.FilterSpanInSymbols)/2 + ...

 vitDec.TracebackDepth;

isequal(td,tdexpected)

ans =

 logical

 1

Calculate the number of bit errors by discarding the last td bits from the transmitted
sequence and discarding the first td bits from the received sequence.

numErrors = biterr(txData(1:end-td),rxData(td+1:end))

numErrors =

 0

14-30

15

Visual Analysis

• “Constellation Visualization” on page 15-2
• “Plot Signal Constellations” on page 15-9
• “Eye Diagram Analysis” on page 15-15
• “Scatter Plots and Constellation Diagrams” on page 15-21
• “Channel Visualization” on page 15-30
• “Visualize RF Impairments” on page 15-44

15 Visual Analysis

Constellation Visualization
Some linear modulator blocks provide the capability to visualize a signal constellation
right from the block mask. This Constellation Visualization feature allows you to
visualize a signal constellation for specific block parameters. The following blocks
support constellation visualization:

• BPSK Modulator Baseband

• QPSK Modulator Baseband

• M-PSK Modulator Baseband

• M-PAM Modulator Baseband

• Rectangular QAM Modulator Baseband

• General QAM Modulator Baseband

Note: To display Fixed-Point settings, you need a Fixed-Point Designer user license.

Clicking View Constellation on a linear modulator block mask, plots the signal
constellation using the block's mask parameters. If you set a modulator block to output
single or fixed-point data types, clicking View Constellation generates two signal
constellations plots overlaid on each other.

• One plot provides a reference constellation using double precision data type
• The other plot provides data whose data type selection is defined in the block mask

The title of the plot indicates the values of significant parameters. You can use the full
array of MATLAB plot tools to manipulate plot figures. Selecting Inherit via back
propagation for the Output Data Type generates a constellation plot with double as
the Output data type.

Observe Modulator Design Affect Signal Constellation

In this tutorial, you will make changes to the modulator block. Without actually
applying the changes to the model, you will observe how these changes effect the signal
constellation.

1 Open the constellation visualization tutorial model by typing
doc_CVTutorialModel at the MATLAB command line.

2 Double-click the Rectangular QAM Modulator Baseband block.

15-2

 Constellation Visualization

3 Next, click View Constellation

The constellation plot shows that the constellation:

• Uses a 16-QAM modulation scheme
• Uses Binary constellation mapping
• Has 0 degree phase offset
• Has a minimum distance between two constellation points of 2

The constellation plot also shows that the signal has a double precision data type.
Because the Input type is integer, the constellation has integer symbol mapping.

4 From the block mask, select Bit for the Input type parameter.
5 Select Gray for the Constellation ordering parameter.
6 Click View Constellation, and observe the results. Even though you did not click

Apply, making these changes part of the model, the constellation plot still updates.
The plot indicates gray constellation ordering using a bit representation of symbols.

15-3

15 Visual Analysis

7 You can overlay and compare the effect that two different data type selections
have on a signal constellation. For example, you can compare the effect of changing
Output data type from double to Fixed-point on the signal constellation.

To compare settings, perform the following tasks:

• Click the Data Types tab.
• Set the Output data type parameter to Fixed-point.
• Set the Output word length parameter to 16.
• Set the Set Output fraction length to parameter to Best precision.

8 Click Main tab, and then click View Constellation.

15-4

 Constellation Visualization

The plot overlays the fixed-point constellation on top of the double-precision
constellation.

9 You can specify a block parameter value using variables defined in the MATLAB
workspace. To define a variable, type M=32 in the MATLAB workspace.

Note: The model workspace in Simulink has priority over the base workspace in
MATLAB.

10 In the block mask, click the Main tab, and then type M for the M-ary number
parameter. This parameter allows the block to use the variable value you defined in
MATLAB workspace.

11 Click the Data Types tab and then select double for the Output data type
parameter.

12 Click the Main tab. Then, click the View Constellation button and observe the
results.

15-5

15 Visual Analysis

13 You can also use the Constellation Visualization feature while a simulation is
running. Type M=16 in the MATLAB workspace, select Integer for the Input type
and click Apply.

14 Simulate the model by clicking Run in the Simulink model window.

15-6

 Constellation Visualization

15 While the simulation is running, click View Constellation. Compare the signal
constellation to the scatter plot generated in the previous step.

15-7

15 Visual Analysis

16 End the simulation by clicking the Stop button in the Simulink model window.

The Constellation Visualization feature provides full access to the MATLAB plotting
capabilities, including: capturing a figure, saving a figure in multiple file formats,
changing display settings, or saving files for archiving purposes. To capture a figure,
select Edit > Copy Figure.

Using this tutorial, you have generated numerous constellation plots. If you close the
Simulink model or delete the modulator block from the model, all the plots will close.

Tip If you capture a figure you want to archive for future use, save the figure before
closing the model.

17 Close the Simulink model, and observe that all of the constellation figures also close.

15-8

 Plot Signal Constellations

Plot Signal Constellations

In this section...

“Create 16-PSK Constellation Diagram” on page 15-9
“Create 32-QAM Constellation Diagram” on page 15-10
“Create 8-QAM Gray Coded Constellation Diagram” on page 15-11
“Plot a Triangular Constellation for QAM” on page 15-12

Create 16-PSK Constellation Diagram

This example shows how to plot a PSK constellation having 16 points.

Set the parameters for 16-PSK modulation with no phase offset and binary symbol
mapping.

M = 16; % Modulation alphabet size

phOffset = 0; % Phase offset

symMap = 'binary'; % Symbol mapping (either 'binary' or 'gray')

Construct the modulator object.

pskModulator = comm.PSKModulator(M,phOffset,'SymbolMapping',symMap);

Plot the constellation.

constellation(pskModulator)

15-9

15 Visual Analysis

Create 32-QAM Constellation Diagram

This example shows how to plot a QAM constellation having 32 points.

Construct the modulator object using name-value pairs to set the properties.

qamModulator = comm.RectangularQAMModulator('ModulationOrder',32, ...

 'SymbolMapping','binary');

Plot the constellation.

constellation(qamModulator)

15-10

 Plot Signal Constellations

Create 8-QAM Gray Coded Constellation Diagram

This example shows how to plot a Gray-coded 8-QAM constellation.

Construct the modulator object using a name-value pair to set the properties. Note that
Gray coding is the default symbol mapping for the comm.RectangularQAMModulator
System object.

qamModulator = comm.RectangularQAMModulator('ModulationOrder',8);

Plot the constellation.

constellation(qamModulator)

15-11

15 Visual Analysis

Plot a Triangular Constellation for QAM

This example shows how to plot a customized QAM reference constellation.

Describe the constellation.

inphase = [1/2 -1/2 1 0 3/2 -3/2 1 -1];

quadr = [1 1 0 2 1 1 2 2];

inphase = [inphase; -inphase];

inphase = inphase(:);

quadr = [quadr; -quadr];

quadr = quadr(:);

refConst = inphase + 1i*quadr;

15-12

 Plot Signal Constellations

Construct a constellation diagram System object using name-value pairs to specify the
title, the axes limits, the reference marker type, and the reference marker color.

constDiagram = comm.ConstellationDiagram('Title','Customized Constellation for QAM', ...

 'XLimits',[-3 3],'YLimits',[-3 3], ...

 'ReferenceConstellation',refConst, ...

 'ReferenceMarker','*','ReferenceColor',[0 1 0]);

Plot the customized constellation.

constDiagram(refConst)

15-13

15 Visual Analysis

15-14

 Eye Diagram Analysis

Eye Diagram Analysis

In digital communications, an eye diagram provides a visual indication of how noise
might impact system performance.

Use the EyeScope tool to examine the data that an eye diagram object contains. EyeScope
shows both the eye diagram plot and measurement results in a unified, graphical
environment. You can import, and compare measurement results for, multiple eye
diagram objects.

For information about constructing an eye diagram object, running a simulation,
collecting data, and analyzing the simulated data, refer to the 'Eye Diagram
Measurements' example. The Eye Diagram and Scatter Plot example covers eye diagram
analysis applied to a communications system.

For a complete list of EyeScope measurements definitions, refer to 'Measurements' in the
Communications System Toolbox User's Guide.

For instructions on how to perform basic EyeScope tasks, see the EyeScope reference
page.

Import Eye Diagrams and Compare Measurement Results

This section provides a step-by-step introduction for using EyeScope to import eye
diagram objects, select and change which eye diagram measurements EyeScope displays,
compare measurement results, and print a plot object.

MATLAB software includes a set of data containing nine eye diagram objects, which you
can import into EyeScope. While EyeScope can import eye diagram objects from either
the workspace or a MAT-file, this introduction covers importing from the workspace.
EyeScope reconstructs the variable names it imports to reflect the origin of the eye
diagram object.

1 Type load commeye_EyeMeasureDemoData at the MATLAB command line to load
nine eye diagram objects into the MATLAB workspace.

2 Type eyescope at the MATLAB command line to start the EyeScope tool.
3 In the EyeScope window, select File > Import Eye Diagram Object.

The Import eye diagram object dialog box opens.

15-15

15 Visual Analysis

In this window, the Workspace contents panel displays all eye diagram objects
available in the source location.

4 Select eyeObj1 and click Import. EyeScope imports the object, displaying an image
in the object plot and listing the file name in the Eye diagram objects list.

Note: Object names associated with eye diagram objects that you import from the
work space begin with the prefix ws.

15-16

 Eye Diagram Analysis

Review the image and note the default Eye diagram object settings and
Measurements selections. For more information, refer to the EyeScope reference
page.

5
In the EyeScope window, click the Import button.

6 From the Import eye diagram object window, click to select eyeObj5 then click the
Import button.

• The EyeScope window changes, displaying a new plot and adding ws_eyeObj5
to the Eye diagram objects list. EyeScope displays the same settings and
measurements for both eye diagram objects.

• You can switch between the eyediagram plots EyeScope displays by clicking on an
object name in the Eye diagram object list.

15-17

15 Visual Analysis

• Next, click ws_eyeObj1 and note the EyeScope plot and measurement values
changes.

7 To change or remove measurements from the EyeScope display:

• Select Options > Measurements View. The Configure measurement view
shuttle control opens.

• Hold down the <Ctrl> key and click to select Vertical Opening, Rise Time, Fall
Time, Eye SNR. Then click Remove.

8 From the left side of the shuttle control, select Crossing Time and Crossing
Amplitude and then click Add. To display EyeScope with these new settings,
click OK. EyeScope's Measurement region displays Crossing Time and Crossing
Amplitude at the bottom of the Measurements section.

9 Change the list order so that Crossing Time and Crossing Amplitude appear at
the top of the list.

• Select Options > Measurements View.
• When the Configure measurement view shuttle control opens, hold down the

<Ctrl> key and click to select Crossing Time and Crossing Amplitude.
• Click the Move Up button until these selections appear at the top of the list.

Then, click OK
10 Select File > Save session as and then type a file name in the pop-up window.

15-18

 Eye Diagram Analysis

11 Import ws_eyeObj2, ws_eyeObj3, and ws_eyeObj4. EyeScope now contains eye
diagram objects 1, 5, 2, 3, and 4 in the list.

12
Select ws_eyeObj5, and click the delete button.

13 Click File > Import Eye Diagram Object, and select ws_eyeObj5.
14 To compare measurement results for multiple eye diagram objects, click View >

Compare Measurement Results View.

In the data set, random jitter increases from experiment 1 to experiment 5, as you
can see in both the table and plot figure.

15 To include any data from the Measurements selection you chose earlier in this
procedure, use the Measurement selector. Go to the Measurement selector and
select Total Jitter. The object plot updates to display the additional measurements.

15-19

15 Visual Analysis

You can also remove measurements from the plot display. In the Measurements
selector, select Random Jitter and Deterministic Jitter. The object plot
updates, removing these two measurements.

16 To print the plot display, select File > Print to Figure. From Figure window, click
the print button.

15-20

 Scatter Plots and Constellation Diagrams

Scatter Plots and Constellation Diagrams

In this section...

“View Signals Using Constellation Diagrams” on page 15-21
“Illustrate How RF Impairments Distort Signal” on page 15-27

A scatter plot or constellation diagram is used to visualize the constellation of a digitally
modulated signal.

To produce a scatter plot from a signal, use the scatterplot function or use the
System object. A scatter plot or constellation diagram can be useful when comparing
system performance to a published standard, such as 3GPP or DVB.

You create the comm.ConstellationDiagram object in two ways: using a default object
or by defining name-value pairs. For more information, see the reference page.

View Signals Using Constellation Diagrams

This example shows how to use constellation diagrams to view QPSK transmitted and
received signals which are pulse shaped with a raised cosine filter.

Create a QPSK modulator.

qpsk = comm.QPSKModulator;

Create a raised cosine transmit filter with an upsample rate, Rup, equal to 16.

Rup = 16;

txfilter = comm.RaisedCosineTransmitFilter('Shape','Normal', ...

 'RolloffFactor',0.5, ...

 'FilterSpanInSymbols',10, ...

 'OutputSamplesPerSymbol',Rup);

Generate data symbols and apply QPSK modulation.

data = randi([0 3],200,1);

modData = qpsk(data);

Create a constellation diagram and set the SamplesPerSymbol property to the
upsampling rate of the signal. Specify the constellation diagram so that it only displays

15-21

15 Visual Analysis

the last 100 samples. This hides the zero values output by the RRC filter for the first
FilterSpanInSymbols samples.

constDiagram = comm.ConstellationDiagram('SamplesPerSymbol',Rup, ...

 'SymbolsToDisplaySource','Property','SymbolsToDisplay',100);

Pass the modulated data through the raised cosine transmit filter.

txSig = txfilter(modData);

Display the constellation diagram of the transmitted signal.

constDiagram(txSig)

15-22

 Scatter Plots and Constellation Diagrams

To match the signal to its reference constellation, normalize the filter by setting its gain
to the square root of the OutputSamplesPerSymbol property. This was previously
specified as Rup. The filter gain is nontunable so the object must be released prior to
changing this value.

release(txfilter)

txfilter.Gain = sqrt(Rup);

15-23

15 Visual Analysis

Pass the modulated signal through the normalized filter.

txSig = txfilter(modData);

Display the constellation diagram of the normalized signal. The data points and
reference constellation nearly overlap.

constDiagram(txSig)

15-24

 Scatter Plots and Constellation Diagrams

To view the transmitted signal more clearly, hide the reference constellation by setting
the ShowReferenceConstellation property to false.

constDiagram.ShowReferenceConstellation = false;

Create a noisy signal by Passing txSig through an AWGN channel.

15-25

15 Visual Analysis

rxSig = awgn(txSig,20,'measured');

Show the reference constellation, and plot the received signal constellation.

constDiagram.ShowReferenceConstellation = true;

constDiagram(rxSig)

15-26

 Scatter Plots and Constellation Diagrams

Illustrate How RF Impairments Distort Signal

This example simulates RF impairments for a signal that was modulated using
differential quaternary phase shift keying (DQPSK). Open the example model by typing
doc_receiverimpairments_dqpsk at the MATLAB command line.

15-27

15 Visual Analysis

Overview of the Model

The model does the following:

• Modulates a random signal using DQPSK modulation.
• Applies impairments to the signal using the blocks from the RF Impairments library.
• Forks the signal into two paths, and processes one path with an automatic gain

control (AGC) to compensate for the free space path loss and the I/Q imbalance.
• Displays the trajectory of the signal with AGC and the trajectory of the signal without

AGC.
• Demodulates both signals and calculates their error rates.

You can see the effect of the automatic gain by comparing the trajectories of the signals
with and without AGC, as shown in the following figure.

Signal With (Left) and Without (Right) AGC

The trajectory of the signal with AGC more closely matches the undistorted trajectory
for DQPSK, shown in the following figure, than does than the signal without AGC.
Consequently, the error rate for the signal with AGC is much lower than the error rate
for the signal without AGC.

15-28

 Scatter Plots and Constellation Diagrams

In this example, the error rate for the demodulated signal without AGC is primarily
caused by free space path loss and I/Q imbalance. The QPSK modulation minimizes the
effects of the other impairments.

15-29

15 Visual Analysis

Channel Visualization

Communications System Toolbox software provides a plotting function that helps you
visualize the characteristics of a fading channel using a GUI. See “Fading Channels” on
page 12-5 for a description of fading channels and objects.

To open the channel visualization tool, type plot(h) at the command line, where h is
a channel object that contains plot information. To populate a channel object with plot
information, run a signal through it after setting its StoreHistory property to true.

For example, the following code opens the channel visualization tool showing a three-
path Rayleigh channel through which a random signal is passed:

% Three-Path Rayleigh channel

h = rayleighchan(1/100000, 130, [0 1.5e-5 3.2e-5], [0, -3, -3]);

hMod = comm.DPSKModulator('ModulationOrder',2);

tx = randi([0 1],500,1); % Random bit stream

dpskSig = step(hMod,tx); % DPSK signal

% dpskSig = dpskmod(tx, 2); % DPSK signal

h.StoreHistory = true; % Allow states to be stored

y = filter(h, dpskSig); % Run signal through channel

plot(h); % Call Channel Visualization Tool

15-30

 Channel Visualization

The Channel Visualization GUI

The Visualization pull-down menu allows you to choose the visualization method. See
“Visualization Options” on page 15-32 for details.

The Frame count counter shows the index of the current frame. It shows the number
of frames processed by the filter method since the channel object was constructed or
reset. A frame is a vector of M elements, interpreted to be M successive samples that are
uniformly spaced in time, with a sample period equal to that specified for the channel.

The Sample index slider control indicates which channel snapshot is currently being
displayed, while the Pause button pauses a running animation until you click it again.
The slider control and Pause button apply to all visualizations except the Doppler
Spectrum.

The Animation pull-down menu allows you to select how you want to display the
channel snapshots within each frame. Setting this to Slow makes the tool show channel

15-31

15 Visual Analysis

snapshots in succession, starting at the sample set by the Sample index slider control.
Selecting Medium or Fast makes the tool show fewer uniformly spaced snapshots,
allowing you to go through the channel snapshots more rapidly. Selecting Interframe
only (the default selection) prevents automatic animation of snapshots within the
same frame. The Animation menu applies to all visualizations except the Doppler
Spectrum.

Visualization Options

The channel visualization tool plots the characteristics of a filter in various ways. Simply
choose the visualization method from the Visualization menu, and the plot updates
itself automatically.

The following visualization methods are currently available:

Impulse Response (IR)

This plot shows the magnitudes of two impulse responses: the multipath response
(infinite bandwidth) and the bandlimited channel response.

The multipath response is represented by stems, each corresponding to one multipath
component. The component with the smallest delay value is shown in red, and the

15-32

 Channel Visualization

component with the largest delay value is shown in blue. Components with intermediate
delay values are shades between red and blue, becoming more blue for larger delays.

The bandlimited channel response is represented by the green curve. This response is the
result of convolving the multipath impulse response, described above, with a sinc pulse of
period, T, equal to the input signal's sample period.

The solid green circles represent the channel filter response sampled at rate 1/T. The
output of the channel filter is the convolution of the input signal (sampled at rate 1/
T) with this discrete-time FIR channel filter response. For computational speed, the
response is truncated.

The hollow green circles represent sample values not captured in the channel filter
response that is used for processing the input signal.

Note that these impulse responses vary over time. You can use the slider to visualize how
the impulse response changes over time for the current frame (i.e., input signal vector
over time).

Frequency Response (FR)

This plot shows the magnitude (in dB) of the frequency response of the multipath
channel over the signal bandwidth.

15-33

15 Visual Analysis

As with the impulse response visualization, you can visualize how this frequency
response changes over time.

15-34

 Channel Visualization

IR Waterfall

This plot shows the evolution of the magnitude impulse response over time.

It shows 10 snapshots of the bandlimited channel impulse response within the last
frame, with the darkest green curve showing the current response.

The time offset is the time of the channel snapshot relative to the current response time.

15-35

15 Visual Analysis

Phasor Trajectory

This plot shows phasors (vectors representing magnitude and phase) for each multipath
component, using the same color code that was used for the impulse response plot.

The phasors are connected end to end in order of path delay, and the trajectory of the
resultant phasor is plotted as a green line. This resultant phasor is referred to as the
narrowband phasor.

This plot can be used to determine the impact of the multipath channel on a narrowband
signal. A narrowband signal is defined here as having a sample period much greater
than the span of delays of the multipath channel (alternatively, a signal bandwidth much
smaller than the coherence bandwidth of the channel). Thus, the multipath channel can
be represented by a single complex gain, which is the sum of all the multipath component
gains. When the narrowband phasor trajectory passes through or near the origin, it
corresponds to a deep narrowband fade.

15-36

 Channel Visualization

Multipath Components

This plot shows the magnitudes of the multipath gains over time, using the same color
code as that used for the multipath impulse response.

The triangle marker and vertical dashed line represent the start of the current frame. If
a frame has been processed previously, its multipath gains may also be displayed.

15-37

15 Visual Analysis

Multipath Gain

This plot shows the collective gains for the multipath channel for three signal
bandwidths.

A collective gain is the sum of component magnitudes, as explained in the following:

• Narrowband (magenta dots): This is the magnitude of the narrowband phasor in the
above trajectory plot. This curve is sometimes referred to as the narrowband fading
envelope.

• Current signal bandwidth (dashed blue line): This is the sum of the magnitudes of the
channel filter impulse response samples (the solid green dots in the impulse response
plot). This curve represents the maximum signal energy that can be captured using
a RAKE receiver. Its value (or metrics, such as theoretical BER, derived from it) is
sometimes referred to as the matched filter bound.

• Infinite bandwidth (solid red line): This is the sum of the magnitudes of the multipath
component gains.

In general, the variability of this multipath gain, or of the signal fading, decreases as
signal bandwidth is increased, because multipath components become more resolvable.

15-38

 Channel Visualization

If the signal bandwidth curve roughly follows the narrowband curve, you might describe
the signal as narrowband. If the signal bandwidth curve roughly follows the infinite
bandwidth curve, you might describe the signal as wideband. With the right receiver, a
wideband signal exploits the path diversity inherent in a multipath channel.

Doppler Spectrum

This plot shows up to two Doppler spectra.

The first Doppler spectrum, represented by the dashed red line, is a theoretical spectrum
based on the Doppler filter response used in the multipath channel model. In the
preceding plot, the theoretical Doppler spectrum used for the multipath channel model
is known as the Jakes spectrum. Note that the plotted Doppler spectrum is normalized
to have a total power of 1. This Doppler spectrum is used to determine a Doppler filter
response. For practical purposes, the Doppler filter response is truncated, which has the
effect of modifying the Doppler spectrum, as shown in the plot.

The second Doppler spectrum, represented by the blue dots, is determined by measuring
the power spectrum of the multipath fading channel as the model generates path gains.
This measurement is meaningful only after enough path gains have been generated. The
title above the plot reports how many samples need to be processed through the channel
before either the first Doppler spectrum or an updated spectrum can be plotted.

15-39

15 Visual Analysis

The Path Number edit box allows you to visualize the Doppler spectrum of the specified
path. The value entered in this box must be a valid path number, i.e., between 1 and the
length of the PathDelays vector property. Once you change the value of this field, the
new Doppler spectrum will appear as soon as the processing of the current frame has
ended.

If the measured Doppler spectrum is a good approximation of the theoretical Doppler
spectrum, the multipath channel model has generated enough fading gains to yield
a reasonable representation of the channel statistics. For instance, if you want to
determine the average BER of a communications link with a multipath channel and
you want a statistically accurate measure of this average, you may want to ensure
that the channel has processed enough samples to yield at least one Doppler spectrum
measurement.

It is possible that a multipath channel (e.g., a Rician channel) can have both specular
(line-of-sight) and diffuse components. In such a case, the Doppler spectrum would have
both a line component and a wideband component. The channel visualization tool only
shows the wideband component for the Doppler spectrum.

Unlike other visualizations, the Doppler spectrum visualization does not support
animation. Because there is no intraframe data to plot, the visualization tool only
updates the channel statistics at the end of each frame and therefore cannot pause
in the middle of a frame. If you switch to the Doppler spectrum visualization from a
different visualization that is in pause mode, the Pause button is subsequently disabled.
Disabling pause avoids interaction problems between the Doppler spectrum visualization
and other animation-style visualizations.

Scattering Function

This plot shows the Doppler spectra of each path versus the path delays, using the same
color code as that used for the multipath impulse response.

15-40

 Channel Visualization

The principle of operation of the Scattering Function plot is similar to that of the Doppler
Spectrum plot. The main difference is that the Doppler spectra on this plot are not
normalized as they are on the Doppler Spectrum plot, in order to better visualize the
power delay profile.

Composite Plots

Several composite plots are also available. These are chosen by selecting the following
from the Visualization pull-down menu:

• IR and FR for impulse response and frequency response plots.
• Components and Gain for multipath components and multipath gain plots.
• Components and IR for multipath components and impulse response plots.
• Components, IR, and Phasor for multipath components, impulse response, and

phasor trajectory plots.

15-41

15 Visual Analysis

Visualize Samples Within a Frame

This example shows how to visualize samples within a frame through animation. The
following lines of code create a Rayleigh channel and open the channel visualization tool:

% Create a fast fading channel

h = rayleighchan(1e-4, 100, [0 1.1e-4], [0 0]);

h.StoreHistory = 1; % Allow states to be stored

y = filter(h, ones(100,1)); % Process samples through channel

plot(h); % Open channel visualization tool

After selecting a visualization option and a speed in the Animation menu, move the
Sample index slider control all the way to the left and click Resume. The slider control
moves by itself during animation. The sample index increments automatically to show
which snapshot you are visualizing.

You can also move the slider control and glance through the samples of the frame as you
like.

Animate Snapshots Across Frames

This example shows how to animate snapshots across frames. The following lines of code
call the filter and plot methods within a loop to accomplish this:

Ts = 1e-4; % Sample period (s)

fd = 100; % Maximum Doppler shift

% Initialize DPSK modulator for M=4

hMod = comm.DPSKModulator(4);

% Path delay and gains

tau = [0.1 1.2 2.3 6.2 11.3]*Ts;

PdB = linspace(0, -10, length(tau)) - length(tau)/20;

nTrials = 10000; % Number of trials

N = 100; % Number of samples per frame

h = rayleighchan(Ts, fd, tau, PdB); % Create channel object

h.NormalizePathGains = false;

h.ResetBeforeFiltering = false;

h.StoreHistory = 1;

h % Show channel object

15-42

 Channel Visualization

% Channel fading simulation

for trial = 1:nTrials

 x = randi([0 3],10000,1); % Random symbols

 dpskSig = step(hMod, x); % Modulated symbols

 y = filter(h, dpskSig); % Channel filter

 plot(h); % Plot channel response

 % The line below returns control to the command line in case

 % the GUI is closed while this program is still running

 if isempty(findobj('name', 'Multipath Channel')), break; end;

end

While the animation is running, you can move the slider control and change the sample
index (which also makes the animation pause). After clicking Resume, the plot continues
to animate.

The property ResetBeforeFiltering needs to be set to false so that the state
information in the channel is not reset after the processing of each frame.

15-43

15 Visual Analysis

Visualize RF Impairments

Apply various RF impairments to a QAM signal. Observe the effects by using
constellation diagrams, time-varying error vector magnitude (EVM) plots, and spectrum
plots. Estimate the equivalent signal-to-noise ratio (SNR).

Initialization

Set the sample rate, modulation order, and SNR. Calculate the reference constellation
points.

fs = 1000;

M = 16;

snrdB = 30;

refConst = qammod(0:M-1,M,'UnitAveragePower',true);

Create constellation diagram and time scope objects to visualize the impairment effects.

constDiagram = comm.ConstellationDiagram('ReferenceConstellation',refConst);

timeScope = dsp.TimeScope('YLimits',[0 40],'SampleRate',fs,'TimeSpan',1, ...

 'ShowGrid',true,'YLabel','EVM (%)');

White Noise

Generate a 16-QAM signal, and pass it through an AWGN channel. Plot its constellation.

data = randi([0 M-1],1000,1);

modSig = qammod(data,M,'UnitAveragePower',true);

noisySig = awgn(modSig,snrdB);

constDiagram(noisySig)

15-44

 Visualize RF Impairments

Estimate the EVM of the noisy signal from the reference constellation points.

evm = comm.EVM('ReferenceSignalSource','Estimated from reference constellation', ...

 'ReferenceConstellation',refConst, ...

 'Normalization','Average constellation power');

rmsEVM = evm(noisySig)

15-45

15 Visual Analysis

rmsEVM =

 3.1768

The modulation error rate (MER) closely corresponds to the SNR. Create an MER object,
and estimate the SNR.

mer = comm.MER('ReferenceSignalSource','Estimated from reference constellation', ...

 'ReferenceConstellation',refConst);

snrEst = mer(noisySig)

snrEst =

 30.1071

The estimate is quite close to the specified SNR of 30 dB.

Amplifier Distortion

Create an amplifier using the memoryless nonlinearity object.

amp = comm.MemorylessNonlinearity('IIP3',38,'AMPMConversion',0);

Pass the modulated signal through the nonlinear amplifier, and plot its constellation
diagram.

txSig = amp(modSig);

constDiagram(txSig)

15-46

 Visualize RF Impairments

The corner points of the constellation have moved toward the origin due to amplifier gain
compression.

Introduce a small AM/PM conversion, and display the received signal constellation.

amp.AMPMConversion = 1;

txSig = amp(modSig);

15-47

15 Visual Analysis

constDiagram(txSig)

The constellation has rotated due to the AM/PM conversion. To compute the time-varying
EVM, release the EVM object and set the AveragingDimensions property to 2. To
estimate the EVM against an input signal, omit the ReferenceSignalSource property
definition. This method produces more accurate results.

15-48

 Visualize RF Impairments

evm = comm.EVM('AveragingDimensions',2);

evmTime = evm(modSig,txSig);

Plot the time-varying EVM of the distorted signal.

timeScope(evmTime)

Compute the RMS EVM.

15-49

15 Visual Analysis

evmRMS = sqrt(mean(evmTime.^2))

evmRMS =

 35.5919

Compute the MER.

mer = comm.MER;

snrEst = mer(modSig,txSig)

snrEst =

 8.1392

The SNR (≈8 dB) is reduced from its initial value (∞) due to amplifier distortion.

Specify input power levels ranging from 0 to 40 dBm. Convert those levels to their linear
equivalent in W. Initialize the output power vector.

powerIn = 0:40;

pin = 10.^((powerIn-30)/10);

powerOut = zeros(length(powerIn),1);

Measure the amplifier output power for the range of input power levels.

for k = 1:length(powerIn)

 data = randi([0 15],1000,1);

 txSig = qammod(data,16,'UnitAveragePower',true)*sqrt(pin(k));

 ampSig = amp(txSig);

 powerOut(k) = 10*log10(var(ampSig))+30;

end

Plot the power output versus power input curve.

figure

plot(powerIn,powerOut,powerIn,powerIn,'--')

legend('Amplifier Output','Ideal Output','location','se')

xlabel('Power In (dBm)')

ylabel('Power Out (dBm)')

grid

15-50

 Visualize RF Impairments

The output power levels off at 30 dBm. The amplifier exhibits nonlinear behavior for
input power levels greater than 25 dBm.

I/Q Imbalance

Apply an amplitude and phase imbalance to the modulated signal.

ampImb = 3;

phImb = 10;

gainI = 10.^(0.5*ampImb/20);

gainQ = 10.^(-0.5*ampImb/20);

imbI = real(modSig)*gainI*exp(-0.5i*phImb*pi/180);

imbQ = imag(modSig)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));

rxSig = imbI + imbQ;

15-51

15 Visual Analysis

Plot the received constellation.

constDiagram(rxSig)

The magnitude and phase of the constellation has changed as a result of the I/Q
imbalance.

Calculate and plot the time-varying EVM.

15-52

 Visualize RF Impairments

evmTime = evm(modSig,rxSig);

timeScope(evmTime)

The EVM exhibits a behavior that is similar to that experienced with a nonlinear
amplifier though the variance is smaller.

Create a 100 Hz sine wave having a 1000 Hz sample rate.

15-53

15 Visual Analysis

sinewave = dsp.SineWave('Frequency',100,'SampleRate',1000, ...

 'SamplesPerFrame',1e4,'ComplexOutput',true);

x = sinewave();

Apply the same 3 dB and 10 degree I/Q imbalance.

ampImb = 3;

phImb = 10;

gainI = 10.^(0.5*ampImb/20);

gainQ = 10.^(-0.5*ampImb/20);

imbI = real(x)*gainI*exp(-0.5i*phImb*pi/180);

imbQ = imag(x)*gainQ*exp(1i*(pi/2 + 0.5*phImb*pi/180));

y = imbI + imbQ;

Plot the spectrum of the imbalanced signal.

spectrum = dsp.SpectrumAnalyzer('SampleRate',1000,'PowerUnits','dBW');

spectrum(y)

15-54

 Visualize RF Impairments

The I/Q imbalance introduces a second tone at -100 Hz, which is the inverse of the input
tone.

Phase Noise

Apply phase noise to the transmitted signal. Plot the resulting constellation diagram.

pnoise = comm.PhaseNoise('Level',-50,'FrequencyOffset',20,'SampleRate',fs);

pnoiseSig = pnoise(modSig);

constDiagram(pnoiseSig)

15-55

15 Visual Analysis

The phase noise introduces a rotational jitter.

Compute and plot the EVM of the received signal.

evmTime = evm(modSig,pnoiseSig);

timeScope(evmTime)

15-56

 Visualize RF Impairments

Determine the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS =

 5.6767

15-57

15 Visual Analysis

Filter Effects

Specify the samples per symbol parameter. Create a pair of raised cosine matched filters.

sps = 4;

txfilter = comm.RaisedCosineTransmitFilter('RolloffFactor',0.2,'FilterSpanInSymbols',8, ...

 'OutputSamplesPerSymbol',sps,'Gain',sqrt(sps));

rxfilter = comm.RaisedCosineReceiveFilter('RolloffFactor',0.2,'FilterSpanInSymbols',8, ...

 'InputSamplesPerSymbol',sps,'Gain',1/sqrt(sps), ...

 'DecimationFactor',sps);

Determine the delay through the matched filters.

fltDelay = 0.5*(txfilter.FilterSpanInSymbols + rxfilter.FilterSpanInSymbols);

Pass the modulated signal through the matched filters.

filtSig = txfilter(modSig);

rxSig = rxfilter(filtSig);

To account for the delay through the filters, discard the first fltDelay samples.

rxSig = rxSig(fltDelay+1:end);

To accommodate the change in the number of received signal samples, create new
constellation diagram and time scope objects.

constDiagram = comm.ConstellationDiagram('ReferenceConstellation',refConst);

timeScope = dsp.TimeScope('YLimits',[0 40],'SampleRate',fs,'TimeSpan',1, ...

 'ShowGrid',true,'YLabel','EVM (%)');

Estimate EVM. Plot the received signal constellation diagram and the time-varying
EVM.

evm = comm.EVM('ReferenceSignalSource','Estimated from reference constellation', ...

 'ReferenceConstellation',refConst, ...

 'Normalization','Average constellation power','AveragingDimensions',2);

evmTime = evm(rxSig);

constDiagram(rxSig)

timeScope(evmTime)

15-58

 Visualize RF Impairments

15-59

15 Visual Analysis

Determine the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS =

 2.7199

15-60

 Visualize RF Impairments

Determine the equivalent SNR.

mer = comm.MER;

snrEst = mer(modSig(1:end-fltDelay),rxSig)

snrEst =

 31.4603

Combined Effects

Combine the effects of the filters, nonlinear amplifier, AWGN, and phase noise. Display
the constellation and EVM diagrams.

Create EVM, time scope and constellation diagram objects.

evm = comm.EVM('ReferenceSignalSource','Estimated from reference constellation', ...

 'ReferenceConstellation',refConst, ...

 'Normalization','Average constellation power','AveragingDimensions',2);

timeScope = dsp.TimeScope('YLimits',[0 40],'SampleRate',fs,'TimeSpan',1, ...

 'ShowGrid',true,'YLabel','EVM (%)');

constDiagram = comm.ConstellationDiagram('ReferenceConstellation',refConst);

Specify the nonlinear amplifier and phase noise objects.

amp = comm.MemorylessNonlinearity('IIP3',45,'AMPMConversion',0);

pnoise = comm.PhaseNoise('Level',-55,'FrequencyOffset',20,'SampleRate',fs);

Filter and then amplify the modulated signal.

txfiltOut = txfilter(modSig);

txSig = amp(txfiltOut);

Add phase noise. Pass the impaired signal through the AWGN channel. Plot the
constellation diagram.

rxSig = awgn(txSig,snrdB);

pnoiseSig = pnoise(rxSig);

rxfiltOut = rxfilter(pnoiseSig);

constDiagram(rxfiltOut)

15-61

15 Visual Analysis

Calculate the time-varying EVM. Plot the result.

evmTime = evm(rxfiltOut);

timeScope(evmTime)

15-62

 Visualize RF Impairments

Determine the RMS EVM.

evmRMS = sqrt(mean(evmTime.^2))

evmRMS =

 6.5682

15-63

15 Visual Analysis

Estimate the SNR.

mer = comm.MER('ReferenceSignalSource','Estimated from reference constellation', ...

 'ReferenceConstellation',refConst);

snrEst = mer(rxfiltOut)

snrEst =

 23.7979

This value is approximately 6 dB worse than the specified value of 30 dB, which means
that the effects of the other impairments are significant and will degrade the bit error
rate performance.

15-64

16

C Code Generation

• “Understanding C Code Generation” on page 16-2
• “C Code Generation from MATLAB” on page 16-4
• “C Code Generation with System Objects and Functions” on page 16-5

16 C Code Generation

Understanding C Code Generation

C Code Generation with the Simulink Coder Product

You can use the Communications System Toolbox, Simulink Coder, and Embedded
Coder® products together to generate code that you can use to implement your model for
a practical application. For instance, you can create an executable from your Simulink
model to run on a target chip. This chapter introduces you to the basic concepts of code
generation using these tools. For more information on code generation, see “Select and
Configure Compiler or IDE”.

Shared Library Dependencies

In general, the code you generate from Communications System Toolbox blocks is
portable ANSI® C code. After you generate the code, you can deploy it on another
machine. For more information on how to do so, see “Relocate Code to Another
Development Environment” in the Simulink Coder documentation.

There are a few Communications System Toolbox blocks that generate code with limited
portability. These blocks use precompiled shared libraries, such as DLLs, to support I/
O for specific types of devices and file formats. To find out which blocks use precompiled
shared libraries, open the Communications System Toolbox Block Support Table.

Simulink Coder provides functions to help you set up and manage the build information
for your models. For example, one of the “Build Information Methods” that Simulink
Coder provides is getNonBuildFiles. This function allows you to identify the shared
libraries required by blocks in your model. If your model contains any blocks that use
precompiled shared libraries, you can install those libraries on the target system. The
folder that you install the shared libraries in must be on the system path. The target
system does not need to have MATLAB installed, but it does need to be supported by
MATLAB.

Highly Optimized Generated ANSI C Code

Communications System Toolbox blocks generate highly optimized ANSI C code.
This C code is often suitable for embedded applications, and includes the following
optimizations:

• Function reuse (run-time libraries) — The generated code reuses common
algorithmic functions via calls to shared utility functions. Shared utility functions are

16-2

 Understanding C Code Generation

highly optimized ANSI/ISO C functions that implement core algorithms such as FFT
and convolution.

• Parameter reuse (Simulink Coder run-time parameters) — In many cases,
if there are multiple instances of a block that all have the same value for a specific
parameter, each block instance points to the same variable in the generated code.
This process reduces memory requirements.

• Blocks have parameters that affect code optimization — Various blocks, such
as the FFT and Sine Wave blocks, have parameters that enable you to optimize
the simulation for memory or for speed. These optimizations also apply to code
generation.

• Other optimizations — Use of contiguous input and output arrays, reusable inputs,
overwritable arrays, and inlined algorithms provide smaller generated C code that is
more efficient at run time.

16-3

16 C Code Generation

C Code Generation from MATLAB

What is C Code Generation from MATLAB?

Code generation from MATLAB is a restricted subset of the MATLAB language that
provides optimizations for:

• Generating efficient, production-quality C/C++ code and MEX files for deployment
in desktop and embedded applications. For embedded targets, the subset restricts
MATLAB semantics to meet the memory and data type requirements of the target
environments.

• Accelerating fixed-point algorithms

Code generation from MATLAB supports the Communications System Toolbox functions
listed in “Communications System Toolbox”. You must have the DSP System Toolbox
software installed to use this feature. To generate C code, you must have the MATLAB
Coder software. If you have the Fixed-Point Designer, you can use fiaccel to generate
MEX code for fixed-point applications.

In order to use Communications System Toolbox you must have a Signal Processing
Toolbox license. There are a number of differences between the use of Signal Processing
Toolbox functions with code generation from MATLAB and the use of these functions in
the Signal Processing Toolbox software. These differences are summarized in Specifying
Inputs in Code Generation for MATLAB and illustrated in Code Generation Examples.

To follow the examples in this documentation:

• To generate C/C++ code with codegen, install the MATLAB Coder software, the
Signal Processing Toolbox, the DSP System Toolbox, and a C compiler. For the
Windows® platform, MATLAB supplies a default C compiler. Run mex -setup at the
MATLAB command prompt to set up the C compiler.

• Change to a folder where you have write permission.

16-4

 C Code Generation with System Objects and Functions

C Code Generation with System Objects and Functions

The following System objects and functions support code generation in MATLAB via the
MATLAB Coder product. To use the codegen function, you must have a MATLAB Coder
license.

Name Remarks and Limitations

Input and Output
comm.BasebandFileReader “System Objects in MATLAB Code Generation”
comm.BasebandFileWriter “System Objects in MATLAB Code Generation”
comm.BarkerCode “System Objects in MATLAB Code Generation”
comm.GoldSequence “System Objects in MATLAB Code Generation”
comm.HadamardCode “System Objects in MATLAB Code Generation”
comm.KasamiSequence “System Objects in MATLAB Code Generation”
comm.WalshCode “System Objects in MATLAB Code Generation”
comm.PNSequence “System Objects in MATLAB Code Generation”
lteZadoffChuSeq —
Signal and Delay Management
bi2de —
de2bi —
Display and Visual Analysis
comm.ConstellationDiagram • Supports MEX code generation through an

auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

comm.EyeDiagram • Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

16-5

16 C Code Generation

Name Remarks and Limitations

dsp.ArrayPlot • Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

dsp.SpectrumAnalyzer • Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

dsp.TimeScope • Supports MEX code generation through an
auto-extrinsic capability. Does not support
code generation for standalone applications.

• “System Objects in MATLAB Code
Generation”

Source Coding
comm.DifferentialDecoder “System Objects in MATLAB Code Generation”
comm.DifferentialEncoder “System Objects in MATLAB Code Generation”
Cyclic Redundancy Check Coding
comm.CRCDetector “System Objects in MATLAB Code Generation”
comm.CRCGenerator “System Objects in MATLAB Code Generation”
comm.HDLCRCDetector “System Objects in MATLAB Code Generation”
comm.HDLCRCGenerator “System Objects in MATLAB Code Generation”
BCH Codes
bchgenpoly All inputs must be constants. Expressions or

variables are allowed if their values do not
change.

comm.BCHDecoder “System Objects in MATLAB Code Generation”
comm.BCHEncoder “System Objects in MATLAB Code Generation”
Reed-Solomon Codes
comm.RSDecoder “System Objects in MATLAB Code Generation”

16-6

 C Code Generation with System Objects and Functions

Name Remarks and Limitations

comm.RSEncoder “System Objects in MATLAB Code Generation”
comm.HDLRSDecoder “System Objects in MATLAB Code Generation”
comm.HDLRSEncoder “System Objects in MATLAB Code Generation”
rsgenpoly All inputs must be constants. Expressions or

variables are allowed if their values do not
change.

rsgenpolycoeffs All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

LDPC Codes
comm.LDPCDecoder Using default properties, comm.LDPCDecoder

does not support code generation. To generate
code, specify the ParityCheckMatrix property
as a non-sparse row-column index matrix.

comm.LDPCEncoder “System Objects in MATLAB Code Generation”
dvbs2ldpc All inputs must be constants. Expressions or

variables are allowed if their values do not
change.

Convolutional Coding
comm.APPDecoder “System Objects in MATLAB Code Generation”
comm.ConvolutionalEncoder “System Objects in MATLAB Code Generation”
comm.TurboDecoder “System Objects in MATLAB Code Generation”
comm.TurboEncoder “System Objects in MATLAB Code Generation”
comm.ViterbiDecoder “System Objects in MATLAB Code Generation”
convenc —
istrellis —
oct2dec —
poly2trellis —
vitdec —
Signal Operations

16-7

16 C Code Generation

Name Remarks and Limitations

bin2gray —
comm.Descrambler “System Objects in MATLAB Code Generation”
comm.Scrambler “System Objects in MATLAB Code Generation”
gray2bin —
Interleaving
comm.AlgebraicDeinterleaver “System Objects in MATLAB Code Generation”
comm.AlgebraicInterleaver “System Objects in MATLAB Code Generation”
comm.BlockDeinterleaver “System Objects in MATLAB Code Generation”
comm.BlockInterleaver “System Objects in MATLAB Code Generation”
comm.ConvolutionalDeinterleaver “System Objects in MATLAB Code Generation”
comm.ConvolutionalInterleaver “System Objects in MATLAB Code Generation”
comm.HelicalDeinterleaver “System Objects in MATLAB Code Generation”
comm.HelicalInterleaver “System Objects in MATLAB Code Generation”
comm.MatrixDeinterleaver “System Objects in MATLAB Code Generation”
comm.MatrixInterleaver “System Objects in MATLAB Code Generation”
comm.MatrixHelicalScanDeinterleaver “System Objects in MATLAB Code Generation”
comm.MatrixHelicalScanInterleaver “System Objects in MATLAB Code Generation”
comm.MultiplexedDeinterleaver “System Objects in MATLAB Code Generation”
comm.MultiplexedInterleaver “System Objects in MATLAB Code Generation”
Frequency Modulation
comm.FSKDemodulator “System Objects in MATLAB Code Generation”
comm.FSKModulator “System Objects in MATLAB Code Generation”
Phase Modulation
comm.BPSKDemodulator “System Objects in MATLAB Code Generation”
comm.BPSKModulator “System Objects in MATLAB Code Generation”
comm.DBPSKDemodulator “System Objects in MATLAB Code Generation”
comm.DBPSKModulator “System Objects in MATLAB Code Generation”
comm.DPSKDemodulator “System Objects in MATLAB Code Generation”

16-8

 C Code Generation with System Objects and Functions

Name Remarks and Limitations

comm.DPSKModulator “System Objects in MATLAB Code Generation”
comm.DQPSKDemodulator “System Objects in MATLAB Code Generation”
comm.DQPSKModulator “System Objects in MATLAB Code Generation”
comm.OQPSKDemodulator “System Objects in MATLAB Code Generation”
comm.OQPSKModulator “System Objects in MATLAB Code Generation”
comm.PSKDemodulator “System Objects in MATLAB Code Generation”
comm.PSKModulator “System Objects in MATLAB Code Generation”
comm.QPSKDemodulator “System Objects in MATLAB Code Generation”
comm.QPSKModulator “System Objects in MATLAB Code Generation”
dpskdemod —
dpskmod —
Amplitude Modulation
comm.GeneralQAMDemodulator “System Objects in MATLAB Code Generation”
comm.GeneralQAMModulator “System Objects in MATLAB Code Generation”
comm.PAMDemodulator “System Objects in MATLAB Code Generation”
comm.PAMModulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMDemodulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMModulator “System Objects in MATLAB Code Generation”
genqamdemod —
qammod —
qamdemod —
Continuous Phase Modulation
comm.CPFSKDemodulator “System Objects in MATLAB Code Generation”
comm.CPFSKModulator “System Objects in MATLAB Code Generation”
comm.CPMDemodulator “System Objects in MATLAB Code Generation”
comm.CPMModulator “System Objects in MATLAB Code Generation”
comm.GMSKDemodulator “System Objects in MATLAB Code Generation”
comm.GMSKModulator “System Objects in MATLAB Code Generation”

16-9

16 C Code Generation

Name Remarks and Limitations

comm.MSKDemodulator “System Objects in MATLAB Code Generation”
comm.MSKModulator “System Objects in MATLAB Code Generation”
Trellis Coded Modulation
comm.GeneralQAMTCMDemodulator “System Objects in MATLAB Code Generation”
comm.GeneralQAMTCMModulator “System Objects in MATLAB Code Generation”
comm.PSKTCMDemodulator “System Objects in MATLAB Code Generation”
comm.PSKTCMModulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMTCMDemodulator “System Objects in MATLAB Code Generation”
comm.RectangularQAMTCMModulator “System Objects in MATLAB Code Generation”
Orthogonal Frequency-Division Modulation
comm.OFDMDemodulator “System Objects in MATLAB Code Generation”
comm.OFDMModulator “System Objects in MATLAB Code Generation”
Analog Baseband Modulation
comm.FMBroadcastDemodulator “System Objects in MATLAB Code Generation”
comm.FMBroadcastModulator “System Objects in MATLAB Code Generation”
comm.FMDemodulator “System Objects in MATLAB Code Generation”
comm.FMModulator “System Objects in MATLAB Code Generation”
Filtering
comm.IntegrateAndDumpFilter “System Objects in MATLAB Code Generation”
comm.RaisedCosineReceiveFilter “System Objects in MATLAB Code Generation”
comm.RaisedCosineTransmitFilter “System Objects in MATLAB Code Generation”
Carrier Phase Synchronization
comm.CarrierSynchronizer “System Objects in MATLAB Code Generation”
comm.CPMCarrierPhaseSynchronizer “System Objects in MATLAB Code Generation”
comm.CoarseFrequencyCompensator “System Objects in MATLAB Code Generation”
Timing Phase Synchronization
comm.SymbolSynchronizer “System Objects in MATLAB Code Generation”
comm.PreambleDetector “System Objects in MATLAB Code Generation”

16-10

 C Code Generation with System Objects and Functions

Name Remarks and Limitations

comm.GMSKTimingSynchronizer “System Objects in MATLAB Code Generation”
comm.MSKTimingSynchronizer “System Objects in MATLAB Code Generation”
Synchronization Utilities
comm.DiscreteTimeVCO “System Objects in MATLAB Code Generation”
Equalization
comm.MLSEEqualizer “System Objects in MATLAB Code Generation”
MIMO
comm.LTEMIMOChannel “System Objects in MATLAB Code Generation”
comm.MIMOChannel “System Objects in MATLAB Code Generation”
comm.OSTBCCombiner “System Objects in MATLAB Code Generation”
comm.OSTBCEncoder “System Objects in MATLAB Code Generation”
comm.SphereDecoder “System Objects in MATLAB Code Generation”
Channel Modeling and RF Impairments
comm.AGC “System Objects in MATLAB Code Generation”
comm.AWGNChannel “System Objects in MATLAB Code Generation”
comm.BinarySymmetricChannel “System Objects in MATLAB Code Generation”
comm.IQImbalanceCompensator “System Objects in MATLAB Code Generation”
comm.LTEMIMOChannel “System Objects in MATLAB Code Generation”
comm.MemorylessNonlinearity “System Objects in MATLAB Code Generation”
comm.MIMOChannel “System Objects in MATLAB Code Generation”
comm.PhaseFrequencyOffset “System Objects in MATLAB Code Generation”
comm.PhaseNoise “System Objects in MATLAB Code Generation”
comm.RayleighChannel “System Objects in MATLAB Code Generation”
comm.RicianChannel “System Objects in MATLAB Code Generation”
comm.ThermalNoise “System Objects in MATLAB Code Generation”
comm.PSKCoarseFrequencyEstimator “System Objects in MATLAB Code Generation”
comm.QAMCoarseFrequencyEstimator “System Objects in MATLAB Code Generation”

16-11

16 C Code Generation

Name Remarks and Limitations

doppler All inputs must be constants. Expressions or
variables are allowed if their values do not
change.

iqcoef2imbal —
iqimbal —
iqimbal2coef —
Measurements and Analysis
comm.ACPR “System Objects in MATLAB Code Generation”
comm.CCDF “System Objects in MATLAB Code Generation”
comm.ErrorRate “System Objects in MATLAB Code Generation”
comm.EVM “System Objects in MATLAB Code Generation”
comm.MER “System Objects in MATLAB Code Generation”

16-12

17

HDL Code Generation

• “HDL Code Generation Support for Communications System Toolbox” on page
17-2

• “Find Blocks and System Objects Supporting HDL Code Generation” on page
17-5

17 HDL Code Generation

HDL Code Generation Support for Communications System
Toolbox

In this section...

“Blocks” on page 17-2
“System Objects” on page 17-3

Blocks

You can find Communications System Toolbox blocks that support HDL code generation,
in the ‘Communications System Toolbox HDL Support' library, in the Simulink library
browser. Alternately, you can type commhdllib in the MATLAB command prompt to
open this library. The blocks in commhdllib have their parameters set for HDL code
generation.

Error Correction

• Convolutional Encoder

• General CRC Generator HDL Optimized

• General CRC Syndrome Detector HDL Optimized

• Integer-Input RS Encoder HDL Optimized

• Integer-Output RS Decoder HDL Optimized

• Viterbi Decoder

Filtering

• DC Blocker

• Raised Cosine Receive Filter

• Raised Cosine Transmit Filter

Interleaving

• Convolutional Deinterleaver

• Convolutional Interleaver

• General Multiplexed Deinterleaver

17-2

 HDL Code Generation Support for Communications System Toolbox

• General Multiplexed Interleaver

Modulation

• BPSK Demodulator Baseband

• BPSK Modulator Baseband

• M-PSK Demodulator Baseband

• M-PSK Modulator Baseband

• QPSK Demodulator Baseband

• QPSK Modulator Baseband

• Rectangular QAM Demodulator Baseband

• Rectangular QAM Modulator Baseband

Sequence Generation

• PN Sequence Generator

Sinks and Visualization

These blocks can be used for simulation visibility in models that generate HDL code, but
are not included in the hardware implementation.

• Constellation Diagram

• Eye Diagram

• Error Rate Calculation

System Objects

HDL Coder supports the following Communications System Toolbox System objects for
HDL code generation:

Error Correction

• comm.HDLCRCDetector
• comm.HDLCRCGenerator
• comm.HDLRSDecoder
• comm.HDLRSEncoder

17-3

17 HDL Code Generation

• comm.ViterbiDecoder

Interleaving

• comm.ConvolutionalDeinterleaver
• comm.ConvolutionalInterleaver

Modulation

• comm.BPSKDemodulator
• comm.BPSKModulator
• comm.PSKDemodulator
• comm.PSKModulator
• comm.QPSKDemodulator
• comm.QPSKModulator
• comm.RectangularQAMDemodulator
• comm.RectangularQAMModulator

17-4

 Find Blocks and System Objects Supporting HDL Code Generation

Find Blocks and System Objects Supporting HDL Code Generation

Blocks

You can find libraries of blocks supported for HDL code generation in the Simulink
library browser. Find Simulink blocks that support HDL code generation, in the ‘HDL
Coder' library. You can also type hdlsllib at the MATLAB command prompt to open
this library.

Create a library of HDL-supported blocks from all products you have installed, by typing
hdllib at the MATLAB command line. This command requires an HDL Coder license.
For more information on this command, see hdllib in the HDL Coder documentation.

Refer to the “Supported Blocks” pages in HDL Coder documentation for block
implementations, properties, and restrictions for HDL code generation.

System Objects

To find System objects supported for HDL code generation, see Predefined System
Objects in the HDL Coder documentation.

17-5

18

Simulation Acceleration

18 Simulation Acceleration

Simulation Acceleration Using GPUs

In this section...

“GPU-Based System objects” on page 18-2
“General Guidelines for Using GPUs” on page 18-3
“Transmit and decode using BPSK modulation and turbo coding” on page 18-3
“Process Multiple Data Frames Using a GPU” on page 18-4
“Process Multiple Data Frames Using NumFrames Property” on page 18-5
“gpuArray and Regular MATLAB Numerical Arrays” on page 18-6
“Pass gpuArray as an Input” on page 18-7
“System Block Support for GPU System Objects” on page 18-7

GPU-Based System objects

GPU-based System objects look and behave much like the other System objects in the
Communications System Toolbox product. The important difference is that the algorithm
is executed on a Graphics Processing Unit (GPU) rather than on a CPU. Using the GPU
can accelerate your simulation.

System objects for the Communications System Toolbox product are located in the comm
package and are constructed as:

H = comm.<object name>

For example, a Viterbi Decoder System object is constructed as:

H = comm.ViterbiDecoder

In cases where a corresponding GPU-based implementation of a System object exists,
they are located in the comm.gpu package and constructed as:

H = comm.gpu.<object name>

For example, a GPU-based Viterbi Decoder System object is constructed as:

H = comm.gpu.ViterbiDecoder

18-2

 Simulation Acceleration Using GPUs

To see a list of available GPU-based implementations enter help comm at the MATLAB
command line and click GPU Implementations.

General Guidelines for Using GPUs

Graphics Processing Units (GPUs) excel at processing large quantities of data and
performing computations with high compute intensity. Processing large quantities of
data is one way to maximize the throughput of your GPU in a simulation. The amount of
the data that the GPU processes at any one time depends on the size of the data passed
to the input of a GPU System object. Therefore, one way to maximize this data size is by
processing multiple frames of data.

You can use a single GPU System object to process multiple data frames simultaneously
or in parallel. This differs from the way many of the standard, or non-GPU, System
objects are implemented. For GPU System objects, the number of frames the objects
process in a single call to the object function is either implied by one of the object
properties or explicitly stated using the NumFrames property on the objects.

Transmit and decode using BPSK modulation and turbo coding

This example shows how to transmit turbo-encoded blocks of data over a BPSK-
modulated AWGN channel. Then, it shows how to decode using an iterative turbo
decoder and display errors.

Define a noise variable, establish a frame length of 256, and use the random stream
property so that the results are repeatable.

noiseVar = 4; frmLen = 256;

s = RandStream('mt19937ar', 'Seed', 11);

intrlvrIndices = randperm(s, frmLen);

Create a Turbo Encoder System object. The trellis structure for the constituent
convolutional code is poly2trellis(4, [13 15 17], 13). The InterleaverIndices property
specifies the mapping the object uses to permute the input bits at the encoder as a
column vector of integers.

turboEnc = comm.TurboEncoder('TrellisStructure', poly2trellis(4, ...

 [13 15 17], 13), 'InterleaverIndices', intrlvrIndices);

Create a BPSK Modulator System object.

18-3

18 Simulation Acceleration

bpsk = comm.BPSKModulator;

Create an AWGN Channel System object.

channel = comm.AWGNChannel('NoiseMethod', 'Variance', 'Variance', ...

 noiseVar);

Create a GPU-Based Turbo Decoder System object. The trellis structure
for the constituent convolutional code is poly2trellis(4, [13 15 17], 13). The
InterleaverIndicies property specifies the mapping the object uses to permute the
input bits at the encoder as a column vector of integers.

turboDec = comm.gpu.TurboDecoder('TrellisStructure', poly2trellis(4, ...

 [13 15 17], 13), 'InterleaverIndices', intrlvrIndices, ...

 'NumIterations', 4);

Create an Error Rate System object.

errorRate = comm.ErrorRate;

Run the simulation.

for frmIdx = 1:8

 data = randi(s, [0 1], frmLen, 1);

 encodedData = turboEnc(data);

 modSignal = bpsk(encodedData);

 receivedSignal = channel(modSignal);

Convert the received signal to log-likelihood ratios for decoding.

receivedBits = turboDec(-2/(noiseVar/2))*real(receivedSignal));

Compare original the data to the received data and then calculate the error rate results.

errorStats = errorRate(data,receivedBits);

end

fprintf('Error rate = %f\nNumber of errors = %d\nTotal bits = %d\n', ...

errorStats(1), errorStats(2), errorStats(3))

Process Multiple Data Frames Using a GPU

This example shows how to simultaneously process two data frames using an LDPC
Decoder System object. The ParityCheckMatrix property determines the frame size.

18-4

 Simulation Acceleration Using GPUs

The number of frames that the object processes is determined by the frame size and the
input data vector length.

numframes = 2;

ldpcEnc = comm.LDPCEncoder;

ldpcGPUDec = comm.gpu.LDPCDecoder;

ldpcDec = comm.LDPCDecoder;

msg = randi([0 1], 32400,2);

for ii=1:numframes,

 encout(:,ii) = ldpcEnc(msg(:,ii));

end

%single ended to bipolar (for LLRs)

encout = 1-2*encout;

%Decode on the CPU

for ii=1:numframes;

 cout(:,ii) = ldpcDec(encout(:,ii));

end

%Mulitframe decode on the GPU

gout = ldpcGPUDec(encout(:));

%check equality

isequal(gout,cout(:))

Process Multiple Data Frames Using NumFrames Property

This example shows how to process multiple data frames using the NumFrames property
of the GPU-based Viterbi Decoder System object. For a Viterbi Decoder, the frame size
of your system cannot be inferred from an object property. Therefore, the NumFrames
property defines the number of frames present in the input data.

numframes = 10;

convEncoder = comm.ConvolutionalEncoder('TerminationMethod', 'Terminated');

vitDecoder = comm.ViterbiDecoder('TerminationMethod', 'Terminated');

%Create a GPU Viterbi Decoder, using NumFrames property.

18-5

18 Simulation Acceleration

vitGPUDecoder = comm.gpu.ViterbiDecoder('TerminationMethod', 'Terminated', ...

 'NumFrames', numframes);

msg = randi([0 1], 200, numframes);

for ii=1:numframes,

 convEncOut(:,ii) = 1-2*convEncoder(msg(:,ii));

end

%Decode on the CPU

for ii=1:numframes;

 cVitOut(:,ii) = vitDecoder(convEncOut(:,ii));

end

%Decode on the GPU

gVitOut = vitGPUDecoder(convEncOut(:));

isequal(gVitOut,cVitOut(:))

gpuArray and Regular MATLAB Numerical Arrays

A GPU-based System object accepts typical MATLAB arrays or objects that you create
using the gpuArray class as an input. GPU-based System objects support input signals
with double- or single-precision data types. The output signal inherits its datatype from
the input signal.

• If the input signal is a MATLAB array, then the output signal is also a MATLAB
array. In this case, the System object handles data transfer between the CPU and
GPU.

• If the input signal is a gpuArray, then the output signal is also a gpuArray. In this
case, the data remains on the GPU. Therefore, when the object is given a gpuArray,
calculations take place entirely on the GPU and no data transfer occurs. Passing
gpuArray arguments provides increased performance by reducing simulation time.
For more information, see “Establish Arrays on a GPU” in the Parallel Computing
Toolbox documentation.

Passing MATLAB arrays to a GPU System object requires transferring the initial
data from a CPU to the GPU. Then, the GPU System object performs calculations and
transfers the output data back to the CPU. This process introduces latency. When data
in the form of a gpuArray is passed to a GPU System object, the object does not incur the
latency from data transfer. Therefore, a GPU System object runs faster when you supply
a gpuArray as the input.

18-6

 Simulation Acceleration Using GPUs

In general, you should try to minimize the amount of data transfer between the CPU and
the GPU in your simulation.

Pass gpuArray as an Input

This example shows how to pass a gpuArray to the input of the PSK modulator, reducing
latency.

pskGPUModulator = comm.gpu.PSKModulator;

x = randi([0 7], 1000, 1, 'single');

gx = gpuArray(x);

o = pskGPUModulator(x);

class(o)

release(pskGPUModulator); %allow input types to change

go = pskGPUModulator(gx);

class(go)

System Block Support for GPU System Objects

• “GPU System Objects Supported in System Block” on page 18-7
• “System Block Limitations for GPU System Objects” on page 18-8

GPU System Objects Supported in System Block

• comm.gpu.AWGNChannel

• comm.gpu.BlockDeinterleaver

• comm.gpu.BlockInterleaver

• comm.gpu.ConvolutionalDeinterleaver

• comm.gpu.ConvolutionalEncoder

• comm.gpu.ConvolutionalInterleaver

• comm.gpu.PSKDemodulator

• comm.gpu.PSKModulator

• comm.gpu.TurboDecoder

• comm.gpu.ViterbiDecoder

18-7

18 Simulation Acceleration

System Block Limitations for GPU System Objects

The GPU System objects must be simulated using Interpreted Execution. You must
select this option explicitly on the block mask; the default value is Code generation.

18-8

19

Define New System Objects

• “Define Basic System Objects” on page 19-3
• “Change Number of Inputs or Outputs” on page 19-5
• “Validate Property and Input Values” on page 19-9
• “Set Property Values at Construction Time” on page 19-12
• “Reset Algorithm State” on page 19-14
• “Define Property Attributes” on page 19-16
• “Hide Inactive Properties” on page 19-20
• “Limit Property Values to Finite List” on page 19-22
• “Process Tuned Properties” on page 19-25
• “Release System Object Resources” on page 19-27
• “Define Composite System Objects” on page 19-29
• “Define Finite Source Objects” on page 19-32
• “Save System Object” on page 19-34
• “Load System Object” on page 19-37
• “Define System Object Information” on page 19-41
• “Add Data Types Tab to MATLAB System Block” on page 19-43
• “Add Button to MATLAB System Block” on page 19-45
• “Specify Locked Input Size” on page 19-48
• “Set Model Reference Discrete Sample Time Inheritance” on page 19-50
• “System Object Input Arguments and ~ in Code Examples” on page 19-52
• “What Are Mixin Classes?” on page 19-53
• “Insert System Object Code Using MATLAB Editor” on page 19-54
• “Analyze System Object Code” on page 19-61
• “Define System Object for Use in Simulink” on page 19-64
• “Use Enumerations in System Objects” on page 19-70

19 Define New System Objects

• “Use Global Variables in System Objects” on page 19-71

19-2

 Define Basic System Objects

Define Basic System Objects

This example shows how to create a basic System object that increments a number
by one. The class definition file used in the example contains the minimum elements
required to define a System object.

Create System Object

You can create and edit a MAT-file or use the MATLAB Editor to create your System
object. This example describes how to use the New menu in the MATLAB Editor.

In MATLAB, on the Editor tab, select New > System Object > Basic. A simple System
object template opens.

Subclass your object from matlab.System. Replace Untitled with AddOne in the first
line of your file.

classdef AddOne < matlab.System

Save the file and name it AddOne.m.

Define Algorithm

The stepImpl method contains the algorithm to execute when you run your object.
Define this method so that it contains the actions you want the System object to perform.

1 In the basic System object you created, inspect the stepImpl method template.

methods (Access = protected)

 function y = stepImpl(obj,u)

 % Implement algorithm. Calculate y as a function of input u and

 % discrete states.

 y = u;

 end

end

The stepImpl method access is always set to protected because it is an internal
method that users do not directly call or run.

All methods, except static methods, expect the System object handle as the first
input argument. The default value, inserted by MATLAB Editor, is obj. You can use
any name for your System object handle.

19-3

19 Define New System Objects

By default, the number of inputs and outputs are both 1. Inputs and outputs can
be added using Inputs/Outputs. If you use variable number of inputs or outputs,
insert the appropriate getNumInputsImpl or getNumOutputsImpl method.

Alternatively, if you create your System object by editing a MAT-file, you can add the
stepImpl method using Insert Method > Implement algorithm.

2 Change the computation in the y function to add 1 to the value of u.

methods (Access = protected)

 function y = stepImpl(~,u)

 y = u + 1;

 end

Note: Instead of passing in the object handle, you can use the tilde (~) to indicate
that the object handle is not used in the function. Using the tilde instead of an object
handle prevents warnings about unused variables.

3 Remove the additional, unused methods that are included by default in the basic
template. Alternatively, you can modify these methods to add more System object
actions and properties. You can also make no changes, and the System object still
operates as intended.

The class definition file now has all the code necessary for this System object.

classdef AddOne < matlab.System

% ADDONE Compute an output value one greater than the input value

 % All methods occur inside a methods declaration.

 % The stepImpl method has protected access

 methods (Access = protected)

 function y = stepImpl(~,u)

 y = u + 1;

 end

 end

end

Related Examples
• “Change Number of Inputs or Outputs” on page 19-5

19-4

 Change Number of Inputs or Outputs

Change Number of Inputs or Outputs
This example shows how to specify two inputs and two outputs to a System object .

If you specify the inputs and outputs to the stepImpl method, you do not need to
specify the getNumInputsImpl and getNumOutputsImpl methods. If you have a
variable number of inputs or outputs (using varargin or varargout), include the
getNumInputsImpl or getNumOutputsImpl method, respectively, in your class
definition file.

Note: You should only use getNumInputsImpl or getNumOutputsImpl methods to
change the number of System object inputs or outputs. Do not use any other handle
objects within a System object to change the number of inputs or outputs.

You always set the getNumInputsImpl and getNumOutputsImpl methods access to
protected because they are internal methods that users do not directly call or run.

Update the Algorithm for Multiple Inputs and Outputs

Update the stepImpl method to specify two inputs and two outputs. You do not need to
implement associated getNumInputsImpl or getNumOutputsImpl methods.

methods (Access = protected)

 function [y1,y2] = stepImpl(~,x1,x2)

 y1 = x1 + 1

 y2 = x2 + 1;

 end

end

Update the Algorithm and Associated Methods

Update the stepImpl method to use varargin and varargout. In this case, you must
implement the associated getNumInputsImpl and getNumOutputsImpl methods to
specify two or three inputs and outputs.

methods (Access = protected)

 function varargout = stepImpl(obj,varargin)

 varargout{1} = varargin{1}+1;

 varargout{2} = varargin{2}+1;

 if (obj.numInputsOutputs == 3)

 varargout{3} = varargin{3}+1;

 end

19-5

19 Define New System Objects

 end

 function validatePropertiesImpl(obj)

 if ~((obj.numInputsOutputs == 2) ||...

 (obj.numInputsOutputs == 3))

 error('Only 2 or 3 input and outputs allowed.');

 end

 end

 function numIn = getNumInputsImpl(obj)

 numIn = 3;

 if (obj.numInputsOutputs == 2)

 numIn = 2;

 end

 end

 function numOut = getNumOutputsImpl(obj)

 numOut = 3;

 if (obj.numInputsOutputs == 2)

 numOut = 2;

 end

 end

end

Use this syntax to run the algorithm with two inputs and two outputs.

addit = AddOne;

x1 = 3;

x2 = 7;

[y1,y2] = addit(x1,x2);

To change the number of inputs or outputs, you must release the object before rerunning
it.

release(addit)

x1 = 3;

x2 = 7;

x3 = 10

[y1,y2,y3] = addit(x1,x2,x3);

Complete Class Definition File with Multiple Inputs and Outputs

 classdef AddOne < matlab.System

% ADDONE Compute output values one greater than the input values

19-6

 Change Number of Inputs or Outputs

 % This property is nontunable and cannot be changed

 % after the setup method has been called or when

 % the object is running.

 properties (Nontunable)

 numInputsOutputs = 3; % Default value

 end

 % All methods occur inside a methods declaration.

 % The stepImpl method has protected access

 methods (Access = protected)

 function varargout = stepImpl(obj,varargin)

 if (obj.numInputsOutputs == 2)

 varargout{1} = varargin{1}+1;

 varargout{2} = varargin{2}+1;

 else

 varargout{1} = varargin{1}+1;

 varargout{2} = varargin{2}+1;

 varargout{3} = varargin{3}+1;

 end

 end

 function validatePropertiesImpl(obj)

 if ~((obj.numInputsOutputs == 2) ||...

 (obj.numInputsOutputs == 3))

 error('Only 2 or 3 input and outputs allowed.');

 end

 end

 function numIn = getNumInputsImpl(obj)

 numIn = 3;

 if (obj.numInputsOutputs == 2)

 numIn = 2;

 end

 end

 function numOut = getNumOutputsImpl(obj)

 numOut = 3;

 if (obj.numInputsOutputs == 2)

 numOut = 2;

 end

 end

 end

19-7

19 Define New System Objects

end

Related Examples
• “Validate Property and Input Values” on page 19-9
• “Define Basic System Objects” on page 19-3

More About
• “System Object Input Arguments and ~ in Code Examples” on page 19-52

19-8

 Validate Property and Input Values

Validate Property and Input Values

This example shows how to verify that the user’s inputs and property values are valid.

Validate Properties

This example shows how to validate the value of a single property using
set.PropertyName syntax. In this case, the PropertyName is Increment.

 methods

 % Validate the properties of the object

 function set.Increment(obj,val)

 if val >= 10

 error('The increment value must be less than 10');

 end

 obj.Increment = val;

 end

 end

This example shows how to validate the value of two interdependent properties using the
validatePropertiesImpl method. In this case, the UseIncrement property value
must be true and the WrapValue property value must be less than the Increment
property value.

 methods (Access = protected)

 function validatePropertiesImpl(obj)

 if obj.UseIncrement && obj.WrapValue > obj.Increment

 error('Wrap value must be less than increment value');

 end

 end

 end

Validate Inputs

This example shows how to validate that the first input is a numeric value.

methods (Access = protected)

 function validateInputsImpl(~,x)

 if ~isnumeric(x)

 error('Input must be numeric');

 end

 end

19-9

19 Define New System Objects

end

Complete Class Definition File with Property and Input Validation

classdef AddOne < matlab.System

% ADDONE Compute an output value by incrementing the input value

 % All properties occur inside a properties declaration.

 % These properties have public access (the default)

 properties (Logical)

 UseIncrement = true

 end

 properties (PositiveInteger)

 Increment = 1

 WrapValue = 10

 end

 methods

 % Validate the properties of the object

 function set.Increment(obj,val)

 if val >= 10

 error('The increment value must be less than 10');

 end

 obj.Increment = val;

 end

 end

 methods (Access = protected)

 function validatePropertiesImpl(obj)

 if obj.UseIncrement && obj.WrapValue > obj.Increment

 error('Wrap value must be less than increment value');

 end

 end

 % Validate the inputs to the object

 function validateInputsImpl(~,x)

 if ~isnumeric(x)

 error('Input must be numeric');

 end

 end

 function out = stepImpl(obj,in)

 if obj.UseIncrement

 out = in + obj.Increment;

19-10

 Validate Property and Input Values

 else

 out = in + 1;

 end

 end

 end

end

Note: See “Change Input Complexity or Dimensions” for more information.

Related Examples
• “Define Basic System Objects” on page 19-3

More About
•
• “Property Set Methods”
• “System Object Input Arguments and ~ in Code Examples” on page 19-52

19-11

19 Define New System Objects

Set Property Values at Construction Time

This example shows how to define a System object constructor and allow it to accept
name-value property pairs as input.

Set Properties to Use Name-Value Pair Input

Define the System object constructor, which is a method that has the same name as
the class (MyFile in this example). Within that method, you use the setProperties
method to make all public properties available for input when the user constructs the
object. nargin is a MATLAB function that determines the number of input arguments.
varargin indicates all of the object’s public properties.

methods

 function obj = MyFile(varargin)

 setProperties(obj,nargin,varargin{:});

 end

end

Complete Class Definition File with Constructor Setup

classdef MyFile < matlab.System

% MyFile write numbers to a file

 % These properties are nontunable. They cannot be changed

 % after the setup method has been called or while the

 % object is running.

 properties (Nontunable)

 Filename ='default.bin' % the name of the file to create

 Access = 'wb' % The file access character vector (write, binary)

 end

 % These properties are private. Customers can only access

 % these properties through methods on this object

 properties (Hidden,Access = private)

 pFileID; % The identifier of the file to open

 end

 methods

 % You call setProperties in the constructor to let

 % a user specify public properties of object as

 % name-value pairs.

 function obj = MyFile(varargin)

 setProperties(obj,nargin,varargin{:});

19-12

 Set Property Values at Construction Time

 end

 end

 methods (Access = protected)

 % In setup allocate any resources, which in this case is

 % opening the file.

 function setupImpl(obj)

 obj.pFileID = fopen(obj.Filename,obj.Access);

 if obj.pFileID < 0

 error('Opening the file failed');

 end

 end

 % This System object™ writes the input to the file.

 function stepImpl(obj,data)

 fwrite(obj.pFileID,data);

 end

 % Use release to close the file to prevent the

 % file handle from being left open.

 function releaseImpl(obj)

 fclose(obj.pFileID);

 end

 end

end

See Also
nargin

Related Examples
• “Define Property Attributes” on page 19-16
• “Release System Object Resources” on page 19-27

19-13

19 Define New System Objects

Reset Algorithm State

This example shows how to reset an object state.

Reset Counter to Zero

pCount is an internal counter property of the System object obj. The user calls the
reset method on the locked object, which calls the resetImpl method. In this example ,
pCount resets to 0.

Note: When resetting an object’s state, make sure you reset the size, complexity, and
data type correctly.

methods (Access = protected)

 function resetImpl(obj)

 obj.pCount = 0;

 end

end

Complete Class Definition File with State Reset

classdef Counter < matlab.System

% Counter System object™ that increments a counter

 properties (Access = private)

 pCount

 end

 methods (Access = protected)

 % Increment the counter and return

 % its value as an output

 function c = stepImpl(obj)

 obj.pCount = obj.pCount + 1;

 c = obj.pCount;

 end

 % Reset the counter to zero.

 function resetImpl(obj)

 obj.pCount = 0;

 end

 end

19-14

 Reset Algorithm State

end

See for more information.

More About
•

19-15

19 Define New System Objects

Define Property Attributes

This example shows how to specify property attributes.

Property attributes, which add details to a property, provide a layer of control to your
properties. In addition to the MATLAB property attributes, System objects can use these
three additional attributes—nontunable, logical, and positiveInteger. To specify
multiple attributes, separate them with commas.

Specify Property as Nontunable

Use the nontunable attribute for a property when the algorithm depends on the value
being constant once data processing starts. Defining a property as nontunable may
improve the efficiency of your algorithm by removing the need to check for or react to
values that change. For code generation, defining a property as nontunable allows the
memory associated with that property to be optimized. You should define all properties
that affect the number of input or output ports as nontunable.

System object users cannot change nontunable properties after the setup method has
been called or while the object is running. In this example, you define the InitialValue
property, and set its value to 0.

properties (Nontunable)

 InitialValue = 0;

end

Specify Property as Logical

Logical properties have the value, true or false. System object users can enter 1 or
0 or any value that can be converted to a logical. The value, however, displays as true
or false. You can use sparse logical values, but they must be scalar values. In this
example, the Increment property indicates whether to increase the counter. By default,
Increment is tunable property. The following restrictions apply to a property with the
Logical attribute,

• Cannot also be Dependent or PositiveInteger
• Default value must be true or false. You cannot use 1 or 0 as a default value.

properties (Logical)

 Increment = true

end

19-16

 Define Property Attributes

Specify Property as Positive Integer

In this example, the private property MaxValue is constrained to accept only real,
positive integers. You cannot use sparse values. The following restriction applies to a
property with the PositiveInteger attribute,

• Cannot also be Dependent or Logical

properties (PositiveInteger)

 MaxValue

end

Specify Property as DiscreteState

If your algorithm uses properties that hold state, you can assign those properties the
DiscreteState attribute . Properties with this attribute display their state values
when users call getDiscreteStateImpl via the getDiscreteState method. The
following restrictions apply to a property with the DiscreteState attribute,

• Numeric, logical, or fi value, but not a scaled double fi value
• Does not have any of these attributes: Nontunable, Dependent, Abstract,

Constant, or Transient.
• No default value
• Not publicly settable
• GetAccess = Public by default
• Value set only using the setupImpl method or when the System object is locked

during resetImpl or stepImpl

In this example, you define the Count property.

properties (DiscreteState)

 Count;

end

Complete Class Definition File with Property Attributes

classdef Counter < matlab.System

% Counter Increment a counter to a maximum value

 % These properties are nontunable. They cannot be changed

 % after the setup method has been called or while the

 % object is running.

19-17

19 Define New System Objects

 properties (Nontunable)

 % The inital value of the counter

 InitialValue = 0

 end

 properties (Nontunable, PositiveInteger)

 % The maximum value of the counter

 MaxValue = 3

 end

 properties (Logical)

 % Whether to increment the counter

 Increment = true

 end

 properties (DiscreteState)

 % Count state variable

 Count

 end

 methods (Access = protected)

 % Increment the counter and return its value

 % as an output

 function c = stepImpl(obj)

 if obj.Increment && (obj.Count < obj.MaxValue)

 obj.Count = obj.Count + 1;

 else

 disp(['Max count, ' num2str(obj.MaxValue) ',reached'])

 end

 c = obj.Count;

 end

 % Setup the Count state variable

 function setupImpl(obj)

 obj.Count = 0;

 end

 % Reset the counter to one.

 function resetImpl(obj)

 obj.Count = obj.InitialValue;

 end

 end

19-18

 Define Property Attributes

end

More About
• “Class Attributes”
• “Property Attributes”
•

19-19

19 Define New System Objects

Hide Inactive Properties

This example shows how to hide the display of a property that is not active for a
particular object configuration.

Hide an inactive property

You use the isInactivePropertyImpl method to hide a property from displaying. If
the isInactiveProperty method returns true to the property you pass in, then that
property does not display.

methods (Access = protected)

 function flag = isInactivePropertyImpl(obj,propertyName)

 if strcmp(propertyName,'InitialValue')

 flag = obj.UseRandomInitialValue;

 else

 flag = false;

 end

 end

end

Complete Class Definition File with Hidden Inactive Property

classdef Counter < matlab.System

 % Counter Increment a counter

 % These properties are nontunable. They cannot be changed

 % after the setup method has been called or when the

 % object is running.

 properties (Nontunable)

 % Allow the user to set the initial value

 UseRandomInitialValue = true

 InitialValue = 0

 end

 % The private count variable, which is tunable by default

 properties (Access = private)

 pCount

 end

 methods (Access = protected)

 % Increment the counter and return its value

 % as an output

 function c = stepImpl(obj)

19-20

 Hide Inactive Properties

 obj.pCount = obj.pCount + 1;

 c = obj.pCount;

 end

 % Reset the counter to either a random value or the initial

 % value.

 function resetImpl(obj)

 if obj.UseRandomInitialValue

 obj.pCount = rand();

 else

 obj.pCount = obj.InitialValue;

 end

 end

 % This method controls visibility of the object's properties

 function flag = isInactivePropertyImpl(obj,propertyName)

 if strcmp(propertyName,'InitialValue')

 flag = obj.UseRandomInitialValue;

 else

 flag = false;

 end

 end

 end

end

19-21

19 Define New System Objects

Limit Property Values to Finite List

This example shows how to limit a property to accept only a finite set of character vector
values.

Specify a Set of Valid Character Vector Values

String sets use two related properties. You first specify the user-visible property name
and default character vector value. Then, you specify the associated hidden property by
appending “Set” to the property name. You must use a capital “S” in “Set.”

In the “Set” property, you specify the valid character vector values as a cell array of the
matlab.system.StringSet class. This example uses Color and ColorSet as the
associated properties.

properties

 Color = 'blue'

end

properties (Hidden,Transient)

 ColorSet = matlab.system.StringSet({'red','blue','green'});

end

Complete Class Definition File with StringSet

classdef Whiteboard < matlab.System

% Whiteboard Draw lines on a figure window

%

% This System object™ illustrates the use of StringSets

 properties

 Color = 'blue'

 end

 properties (Hidden,Transient)

 % Let them choose a color

 ColorSet = matlab.system.StringSet({'red','blue','green'});

 end

 methods (Access = protected)

 function stepImpl(obj)

 h = Whiteboard.getWhiteboard();

 plot(h, ...

 randn([2,1]),randn([2,1]), ...

19-22

 Limit Property Values to Finite List

 'Color',obj.Color(1));

 end

 function releaseImpl(obj)

 cla(Whiteboard.getWhiteboard());

 hold on

 end

 end

 methods (Static)

 function a = getWhiteboard()

 h = findobj('tag','whiteboard');

 if isempty(h)

 h = figure('tag','whiteboard');

 hold on

 end

 a = gca;

 end

 end

end

String Set System Object Example

%%

% Each time you run the object, it draws lines on a whiteboard

%% Construct the System object

hGreenInk = Whiteboard;

hBlueInk = Whiteboard;

% Change the color

% Note: Press tab after typing the first single quote to

% display all enumerated values.

hGreenInk.Color = 'green';

hBlueInk.Color = 'blue';

% Take a few steps

for i=1:3

 hGreenInk();

 hBlueInk();

end

%% Clear the whiteboard

hBlueInk.release();

19-23

19 Define New System Objects

%% Display System object used in this example

type('Whiteboard.m');

19-24

 Process Tuned Properties

Process Tuned Properties

This example shows how to specify the action to take when a tunable property value
changes during simulation.

The processTunedPropertiesImpl method is useful for managing actions to prevent
duplication. In many cases, changing one of multiple interdependent properties causes
an action. With the processTunedPropertiesImpl method, you can control when that
action is taken so it is not repeated unnecessarily.

Control When a Lookup Table Is Generated

This example of processTunedPropertiesImpl causes the pLookupTable to be
regenerated when either the NumNotes or MiddleC property changes.

methods (Access = protected)

 function processTunedPropertiesImpl(obj)

 propChange = isChangedProperty(obj,'NumNotes')||...

 isChangedProperty(obj,'MiddleC')

 if propChange

 obj.pLookupTable = obj.MiddleC *...

 (1+log(1:obj.NumNotes)/log(12));

 end

 endend

Complete Class Definition File with Tuned Property Processing

classdef TuningFork < matlab.System

 % TuningFork Illustrate the processing of tuned parameters

 %

 properties

 MiddleC = 440

 NumNotes = 12

 end

 properties (Access = private)

 pLookupTable

 end

 methods (Access = protected)

 function resetImpl(obj)

 obj.MiddleC = 440;

 obj.pLookupTable = obj.MiddleC * ...

19-25

19 Define New System Objects

 (1+log(1:obj.NumNotes)/log(12));

 end

 function hz = stepImpl(obj,noteShift)

 % A noteShift value of 1 corresponds to obj.MiddleC

 hz = obj.pLookupTable(noteShift);

 end

 function processTunedPropertiesImpl(obj)

 propChange = isChangedProperty(obj,'NumNotes')||...

 isChangedProperty(obj,'MiddleC')

 if propChange

 obj.pLookupTable = obj.MiddleC *...

 (1+log(1:obj.NumNotes)/log(12));

 end

 end

end

19-26

 Release System Object Resources

Release System Object Resources

This example shows how to release resources allocated and used by the System object.
These resources include allocated memory, files used for reading or writing, etc.

Release Memory by Clearing the Object

This method allows you to clear the axes on the Whiteboard figure window while keeping
the figure open.

methods

 function releaseImpl(obj)

 cla(Whiteboard.getWhiteboard());

 hold on

 end

end

Complete Class Definition File with Released Resources

classdef Whiteboard < matlab.System

% Whiteboard Draw lines on a figure window

%

% This System object™ shows the use of StringSets

%

 properties

 Color = 'blue'

 end

 properties (Hidden)

 % Let user choose a color

 ColorSet = matlab.system.StringSet({'red','blue','green'});

 end

 methods (Access = protected)

 function stepImpl(obj)

 h = Whiteboard.getWhiteboard();

 plot(h, ...

 randn([2,1]), randn([2,1]), ...

 'Color',obj.Color(1));

 end

 function releaseImpl(obj)

 cla(Whiteboard.getWhiteboard());

 hold on

19-27

19 Define New System Objects

 end

 end

 methods (Static)

 function a = getWhiteboard()

 h = findobj('tag','whiteboard');

 if isempty(h)

 h = figure('tag','whiteboard');

 hold on

 end

 a = gca;

 end

 end

end

Related Examples
•

19-28

 Define Composite System Objects

Define Composite System Objects

This example shows how to define System objects that include other System objects.

This example defines a bandpass filter System object from separate highpass and
lowpass filter System objects.

Store System Objects in Properties

To define a System object from other System objects, store those other objects in your
class definition file as properties. In this example, the highpass and lowpass filters are
the separate System objects defined in their own class-definition files.

properties (Access = private)

 % Properties that hold filter System objects

 pLowpass

 pHighpass

end

Complete Class Definition File of Bandpass Filter Composite System Object

classdef BandpassFIRFilter < matlab.System

% Implements a bandpass filter using a cascade of eighth-order lowpass

% and eighth-order highpass FIR filters.

 properties (Access = private)

 % Properties that hold filter System objects

 pLowpass

 pHighpass

 end

 methods (Access = protected)

 function setupImpl(obj)

 % Setup composite object from constituent objects

 obj.pLowpass = LowpassFIRFilter;

 obj.pHighpass = HighpassFIRFilter;

 end

 function yHigh = stepImpl(obj,u)

 yLow = obj.pLowpass(u);

 yHigh = obj.pHighpass(yLow);

 end

 function resetImpl(obj)

19-29

19 Define New System Objects

 reset(obj.pLowpass);

 reset(obj.pHighpass);

 end

 end

end

Class Definition File for Lowpass FIR Component of Bandpass Filter

classdef LowpassFIRFilter < matlab.System

% Implements eighth-order lowpass FIR filter with 0.6pi cutoff

 properties (Nontunable)

 % Filter coefficients

 Numerator = [0.006,-0.0133,-0.05,0.26,0.6,0.26,-0.05,-0.0133,0.006];

 end

 properties (DiscreteState)

 State

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.State = zeros(length(obj.Numerator)-1,1);

 end

 function y = stepImpl(obj,u)

 [y,obj.State] = filter(obj.Numerator,1,u,obj.State);

 end

 function resetImpl(obj)

 obj.State = zeros(length(obj.Numerator)-1,1);

 end

 end

end

Class Definition File for Highpass FIR Component of Bandpass Filter

classdef HighpassFIRFilter < matlab.System

% Implements eighth-order highpass FIR filter with 0.4pi cutoff

 properties (Nontunable)

 % Filter coefficients

 Numerator = [0.006,0.0133,-0.05,-0.26,0.6,-0.26,-0.05,0.0133,0.006];

 end

 properties (DiscreteState)

 State

19-30

 Define Composite System Objects

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.State = zeros(length(obj.Numerator)-1,1);

 end

 function y = stepImpl(obj,u)

 [y,obj.State] = filter(obj.Numerator,1,u,obj.State);

 end

 function resetImpl(obj)

 obj.State = zeros(length(obj.Numerator)-1,1);

 end

 end

end

See Also
nargin

19-31

19 Define New System Objects

Define Finite Source Objects

This example shows how to define a System object that performs a specific number of
steps or specific number of reads from a file.

Use the FiniteSource Class and Specify End of the Source

1 Subclass from finite source class.

 classdef RunTwice < matlab.System & ...

 matlab.system.mixin.FiniteSource

2 Specify the end of the source with the isDoneImpl method. In this example, the
source has two iterations.

 methods (Access = protected)

 function bDone = isDoneImpl(obj)

 bDone = obj.NumSteps==2

 end

Complete Class Definition File with Finite Source

classdef RunTwice < matlab.System & ...

 matlab.system.mixin.FiniteSource

 % RunTwice System object that runs exactly two times

 %

 properties (Access = private)

 NumSteps

 end

 methods (Access = protected)

 function resetImpl(obj)

 obj.NumSteps = 0;

 end

 function y = stepImpl(obj)

 if ~obj.isDone()

 obj.NumSteps = obj.NumSteps + 1;

 y = obj.NumSteps;

 else

 y = 0;

 end

 end

 function bDone = isDoneImpl(obj)

19-32

 Define Finite Source Objects

 bDone = obj.NumSteps==2;

 end

 end

end

More About
• “What Are Mixin Classes?” on page 19-53
• “Subclass Multiple Classes”
• “System Object Input Arguments and ~ in Code Examples” on page 19-52

19-33

19 Define New System Objects

Save System Object

This example shows how to save a System object.

Save System Object and Child Object

Define a saveObjectImpl method to specify that more than just public properties
should be saved when the user saves a System object. Within this method, use the
default saveObjectImpl@matlab.System to save public properties to the struct,
s. Use the saveObject method to save child objects. Save protected and dependent
properties, and finally, if the object is locked, save the object’s state.

methods (Access = protected)

 function s = saveObjectImpl(obj)

 s = saveObjectImpl@matlab.System(obj);

 s.child = matlab.System.saveObject(obj.child);

 s.protectedprop = obj.protectedprop;

 s.pdependentprop = obj.pdependentprop;

 if isLocked(obj)

 s.state = obj.state;

 end

 end

end

Complete Class Definition Files with Save and Load

The Counter class definition file sets up an object with a count property. This counter is
used in the MySaveLoader class definition file to count the number of child objects.

classdef Counter < matlab.System

 properties(DiscreteState)

 Count

 end

 methods (Access=protected)

 function setupImpl(obj, ~)

 obj.Count = 0;

 end

 function y = stepImpl(obj, u)

 if u > 0

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 end

19-34

 Save System Object

end

classdef MySaveLoader < matlab.System

 properties (Access = private)

 child

 pdependentprop = 1

 end

 properties (Access = protected)

 protectedprop = rand;

 end

 properties (DiscreteState = true)

 state

 end

 properties (Dependent)

 dependentprop

 end

 methods

 function obj = MySaveLoader(varargin)

 obj@matlab.System();

 setProperties(obj,nargin,varargin{:});

 end

 function set.dependentprop(obj, value)

 obj.pdependentprop = min(value, 5);

 end

 function value = get.dependentprop(obj)

 value = obj.pdependentprop;

 end

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.state = 42;

 obj.child = Counter;

 end

 function out = stepImpl(obj,in)

 obj.state = in + obj.state + obj.protectedprop + obj.pdependentprop;

 out = obj.child(obj.state);

 end

19-35

19 Define New System Objects

 end

 % Serialization

 methods (Access = protected)

 function s = saveObjectImpl(obj)

 % Call the base class method

 s = saveObjectImpl@matlab.System(obj);

 % Save the child System objects

 s.child = matlab.System.saveObject(obj.child);

 % Save the protected & private properties

 s.protectedprop = obj.protectedprop;

 s.pdependentprop = obj.pdependentprop;

 % Save the state only if object locked

 if isLocked(obj)

 s.state = obj.state;

 end

 end

 function loadObjectImpl(obj,s,wasLocked)

 % Load child System objects

 obj.child = matlab.System.loadObject(s.child);

 % Load protected and private properties

 obj.protectedprop = s.protectedprop;

 obj.pdependentprop = s.pdependentprop;

 % Load the state only if object locked

 if wasLocked

 obj.state = s.state;

 end

 % Call base class method to load public properties

 loadObjectImpl@matlab.System(obj,s,wasLocked);

 end

 end

end

Related Examples
• “Load System Object” on page 19-37

19-36

 Load System Object

Load System Object

This example shows how to load and save a System object.

Load System Object and Child Object

Define a loadObjectImpl method to load a previously saved System object. Within
this method, use the matlab.System.loadObject to load the child System object,
load protected and private properties, load the state if the object is locked, and use
loadObjectImpl from the base class to load public properties.

methods (Access = protected)

 function loadObjectImpl(obj,s,wasLocked)

 obj.child = matlab.System.loadObject(s.child);

 obj.protectedprop = s.protectedprop;

 obj.pdependentprop = s.pdependentprop;

 if wasLocked

 obj.state = s.state;

 end

 loadObjectImpl@matlab.System(obj,s,wasLocked);

 end

end

Complete Class Definition Files with Save and Load

The Counter class definition file sets up an object with a count property. This counter is
used in the MySaveLoader class definition file to count the number of child objects.

classdef Counter < matlab.System

 properties(DiscreteState)

 Count

 end

 methods (Access=protected)

 function setupImpl(obj, ~)

 obj.Count = 0;

 end

 function y = stepImpl(obj, u)

 if u > 0

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

19-37

19 Define New System Objects

 end

 end

end

classdef MySaveLoader < matlab.System

 properties (Access = private)

 child

 pdependentprop = 1

 end

 properties (Access = protected)

 protectedprop = rand;

 end

 properties (DiscreteState = true)

 state

 end

 properties (Dependent)

 dependentprop

 end

 methods

 function obj = MySaveLoader(varargin)

 obj@matlab.System();

 setProperties(obj,nargin,varargin{:});

 end

 function set.dependentprop(obj, value)

 obj.pdependentprop = min(value, 5);

 end

 function value = get.dependentprop(obj)

 value = obj.pdependentprop;

 end

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.state = 42;

 obj.child = Counter;

 end

 function out = stepImpl(obj,in)

 obj.state = in + obj.state + obj.protectedprop + obj.pdependentprop;

19-38

 Load System Object

 out = obj.child(obj.state);

 end

 end

 % Serialization

 methods (Access = protected)

 function s = saveObjectImpl(obj)

 % Call the base class method

 s = saveObjectImpl@matlab.System(obj);

 % Save the child System objects

 s.child = matlab.System.saveObject(obj.child);

 % Save the protected & private properties

 s.protectedprop = obj.protectedprop;

 s.pdependentprop = obj.pdependentprop;

 % Save the state only if object locked

 if isLocked(obj)

 s.state = obj.state;

 end

 end

 function loadObjectImpl(obj,s,wasLocked)

 % Load child System objects

 obj.child = matlab.System.loadObject(s.child);

 % Load protected and private properties

 obj.protectedprop = s.protectedprop;

 obj.pdependentprop = s.pdependentprop;

 % Load the state only if object locked

 if wasLocked

 obj.state = s.state;

 end

 % Call base class method to load public properties

 loadObjectImpl@matlab.System(obj,s,wasLocked);

 end

 end

19-39

19 Define New System Objects

end

Related Examples
• “Save System Object” on page 19-34

19-40

 Define System Object Information

Define System Object Information

This example shows how to define information to display for a System object.

Define System Object Info

You can define your own info method to display specific information for your
System object. The default infoImpl method returns an empty struct. This
infoImpl method returns detailed information when the info method is called using
info(x,'details') or only count information if it is called using info(x).

methods (Access = protected)

 function s = infoImpl(obj,varargin)

 if nargin>1 && strcmp('details',varargin(1))

 s = struct('Name','Counter',...

 'Properties', struct('CurrentCount', ...

 obj.Count,'Threshold',obj.Threshold));

 else

 s = struct('Count',obj.Count);

 end

 end

end

Complete Class Definition File with InfoImpl

classdef Counter < matlab.System

 % Counter Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods (Access = protected)

 function setupImpl(obj)

 obj.Count = 0;

 end

 function resetImpl(obj)

 obj.Count = 0;

 end

19-41

19 Define New System Objects

 function y = stepImpl(obj,u)

 if (u > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function s = infoImpl(obj,varargin)

 if nargin>1 && strcmp('details',varargin(1))

 s = struct('Name','Counter',...

 'Properties', struct('CurrentCount', ...

 obj.Count,'Threshold',obj.Threshold));

 else

 s = struct('Count',obj.Count);

 end

 end

 end

end

19-42

 Add Data Types Tab to MATLAB System Block

Add Data Types Tab to MATLAB System Block

This example shows how to add a Data Types tab to the MATLAB System block dialog
box. This tab includes fixed-point data type settings.

Display Data Types Tab

This example shows how to use matlab.system.showFiSettingsImpl to display the
Data Types tab in the MATLAB System block dialog.

methods (Static, Access = protected)

 function showTab = showFiSettingsImpl

 showTab = true;

 end

end

Complete Class Definition File with Data Types Tab

Use showFiSettingsImpl to display the Data Types tab for a System object that adds
an offset to a fixed-point input.

classdef FiTabAddOffset < matlab.System

% FiTabAddOffset Add an offset to input

 properties

 Offset = 1;

 end

 methods

 function obj = FiTabAddOffset(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 end

 methods (Access = protected)

 function y = stepImpl(~,u)

 y = u + obj.Offset;

 end

 end

 methods(Static, Access=protected)

 function header = getHeaderImpl

 header = matlab.system.display.Header('Title',...

 'Add Offset','Text','Add an offset to the input');

19-43

19 Define New System Objects

 end

 function isVisible = showFiSettingsImpl

 isVisible = true;

 end

 end

end

19-44

 Add Button to MATLAB System Block

Add Button to MATLAB System Block

This example shows how to add a button to the MATLAB System block dialog box. This
button launches a figure that plots a ramp function.

Define Action for Dialog Button

This example shows how to use matlab.system.display.Action to define the
MATLAB function or code associated with a button in the MATLAB System block dialog.
The example also shows how to set button options and use an actionData object input
to store a figure handle. This part of the code example uses the same figure when the
button is clicked multiple times, rather than opening a new figure for each button click.

methods(Static,Access = protected)

 function group = getPropertyGroupsImpl

 group = matlab.system.display.Section(mfilename('class'));

 group.Actions = matlab.system.display.Action(@(actionData,obj)...

 visualize(obj,actionData),'Label','Visualize');

 end

end

methods

 function obj = ActionDemo(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 function visualize(obj,actionData)

 f = actionData.UserData;

 if isempty(f) || ~ishandle(f)

 f = figure;

 actionData.UserData = f;

 else

 figure(f); % Make figure current

 end

 d = 1:obj.RampLimit;

 plot(d);

 end

end

Complete Class Definition File for Dialog Button

Define a property group and a second tab in the class definition file.

19-45

19 Define New System Objects

classdef PlotRamp < matlab.System

 % Display a button to launch a plot figure.

 properties (Nontunable)

 RampLimit = 10;

 end

 methods(Static,Access = protected)

 function group = getPropertyGroupsImpl

 group = matlab.system.display.Section(mfilename('class'));

 group.Actions = matlab.system.display.Action(@(actionData,obj)...

 visualize(obj,actionData),'Label','Visualize');

 end

 end

 methods

 function obj = ActionDemo(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 function visualize(obj,actionData)

 f = actionData.UserData;

 if isempty(f) || ~ishandle(f)

 f = figure;

 actionData.UserData = f;

 else

 figure(f); % Make figure current

 end

 d = 1:obj.RampLimit;

 plot(d);

 end

 end

19-46

 Add Button to MATLAB System Block

end

More About
• “System Object Input Arguments and ~ in Code Examples” on page 19-52

19-47

19 Define New System Objects

Specify Locked Input Size

This example shows how to specify whether the size of a System object input is locked.
The size of a locked input cannot change until the System object is unlocked. Run the
object to lock it. Use release to unlock the object.

Use the isInputSizeLockedImpl method to specify that the input size is locked.

methods (Access = protected)

 function flag = isInputSizeLockedImpl(~,~)

 flag = true;

 end

end

View the method in the complete class definition file.

classdef Counter < matlab.System

 %Counter Count values above a threshold

 properties

 Threshold = 1

 end

 properties (DiscreteState)

 Count

 end

 methods

 function obj = Counter(varargin)

 setProperties(obj,nargin,varargin{:});

 end

 end

 methods (Access=protected)

 function resetImpl(obj)

 obj.Count = 0;

 end

 function y = stepImpl(obj, u1)

 if (any(u1 >= obj.Threshold))

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

19-48

 Specify Locked Input Size

 function flag = isInputSizeLockedImpl(~,~)

 flag = true;

 end

 end

end

19-49

19 Define New System Objects

Set Model Reference Discrete Sample Time Inheritance
This example shows how to disallow model reference discrete sample time
inheritance for a System object. The System object defined in this example has
one input, so by default, it allows sample time inheritance. To override the default
and disallow inheritance, the class definition file for this example includes the
allowModelReferenceDiscreteSampleTimeInheritanceImpl method, with its
output set to false.

methods (Access = protected)

 function flag = ...

 allowModelReferenceDiscreteSampleTimeInheritanceImpl(obj)

 flag = false;

 end

end

View the method in the complete class definition file.

classdef MyCounter < matlab.System

 % MyCounter Count values

 properties

 Threshold = 1;

 end

 properties (DiscreteState)

 Count

 end

 methods (Static, Access = protected)

 function header = getHeaderImpl

 header = matlab.system.display.Header('MyCounter',...

 'Title','My Enhanced Counter',...

 'Text', 'This counter is an enhanced version.');

 end

 end

 methods (Access = protected)

 function flag = ...

 allowModelReferenceDiscreteSampleTimeInheritanceImpl(obj)

 flag = false

 end

 function setupImpl(obj,u)

19-50

 Set Model Reference Discrete Sample Time Inheritance

 obj.Count = 0;

 end

 function y = stepImpl(obj,u)

 if (u > obj.Threshold)

 obj.Count = obj.Count + 1;

 end

 y = obj.Count;

 end

 function resetImpl(obj)

 obj.Count = 0;

 end

 end

end

19-51

19 Define New System Objects

System Object Input Arguments and ~ in Code Examples

All methods, except static methods, expect the System object handle as the first input
argument. You can use any name for your System object handle. In many examples,
instead of passing in the object handle, ~ is used to indicate that the object handle is
not used in the function. Using ~ instead of an object handle prevents warnings about
unused variables.

19-52

 What Are Mixin Classes?

What Are Mixin Classes?

Mixin classes are partial classes that you can combine in various combinations to form
desired behaviors using multiple inheritance. System objects are composed of a base
class, matlab.System and may include one or more mixin classes. You specify the base
class and mixin classes on the first line of your class definition file.

The following mixin classes are available for use with System objects.

• matlab.system.mixin.CustomIcon — Defines a block icon for System objects in
the MATLAB System block

• matlab.system.mixin.FiniteSource — Adds the isDone method to System
objects that are sources

• matlab.system.mixin.Nondirect — Allows the System object, when used in the
MATLAB System block, to support nondirect feedthrough by making the runtime
callback functions, output and update available

• matlab.system.mixin.Propagates — Enables System objects to operate in the
MATLAB System block using the interpreted execution

19-53

19 Define New System Objects

Insert System Object Code Using MATLAB Editor

In this section...

“Define System Objects with Code Insertion” on page 19-54
“Create Fahrenheit Temperature String Set” on page 19-57
“Create Custom Property for Freezing Point” on page 19-58
“Define Input Size As Locked” on page 19-59

Define System Objects with Code Insertion

You can define System objects from the MATLAB Editor using code insertion options.
When you select these options, the MATLAB Editor adds predefined properties, methods,
states, inputs, or outputs to your System object. Use these tools to create and modify
System objects faster, and to increase accuracy by reducing typing errors.

To access the System object editing options, create a new System object, or open an
existing one.

To add predefined code to your System object, select the code from the appropriate menu.
For example, when you click Insert Property > Numeric, the MATLAB Editor adds the
following code:

 properties(Nontunable)

 Property

 end

The MATLAB Editor inserts the new property with the default name Property,
which you can rename. If you have an existing properties group with the Nontunable

19-54

 Insert System Object Code Using MATLAB Editor

attribute, the MATLAB Editor inserts the new property into that group. If you do not
have a property group, the MATLAB Editor creates one with the correct attribute.

Insert Options

Properties Properties of the System object: Numeric, Logical, String Set, Positive Integer,
Tunable Numeric, Private, Protected, and Custom. When you select String Set
or Custom Properties, a separate dialog box opens to guide you in creating these
properties.

Methods Methods commonly used in System object definitions. The MATLAB Editor creates
only the method structure. You specify the actions of that method.

The Insert Method menu organizes methods by categories, such as Algorithm,
Inputs and Outputs, and Properties and States. When you select a method from
the menu, the MATLAB Editor inserts the method template in your System object
code. In this example, selecting Insert Method > Release resources inserts the
following code:

 function releaseImpl(obj)

 % Release resources, such as file handles

 end

If an method from the Insert Method menu is present in the System object code,
that method is shown shaded on the Insert Method menu:

19-55

19 Define New System Objects

States Properties containing the DiscreteState attribute.
Inputs /
Outputs

Inputs, outputs, and related methods, such as Validate inputs and Lock input
size.

When you select an input or output, the MATLAB Editor inserts the specified code
in the stepImpl method. In this example, selecting Insert > Input causes the
MATLAB Editor to insert the required input variable u2. The MATLAB Editor
determines the variable name, but you can change it after it is inserted.

 function y = stepImpl(obj,u,u2)

 % Implement algorithm. Calculate y as a function of

 % input u and discrete states.

 y = u;

 end

19-56

 Insert System Object Code Using MATLAB Editor

Create Fahrenheit Temperature String Set

1 Open a new or existing System object.
2 In the MATLAB Editor, select Insert Property > String Set.
3 In the String Set dialog box, under Name, replace Color with TemperatureUnit.
4 Remove the existing Color property values with the - (minus) button.
5 Add a property value with the + (plus) button. Enter Fahrenheit.
6 Add another property value with +. Enter Celsius.
7 Add another property value with +. Enter Kelvin.
8 Select Fahrenheit as the default value by clicking Default.

The dialog box now looks as shown:

9 To create this string set and associated properties, with the default value selected,
click Insert.

Examine the System object definition. The MATLAB Editor has added the following code:

 properties (Nontunable)

19-57

19 Define New System Objects

 TemperatureUnit = 'Fahrenheit';

 end

 properties(Constant, Hidden)

 TemperatureUnitSet = matlab.system.StringSet({'Fahrenheit','Celsius','Kelvin'});

 end

For more information on the StringSet class, see .

Create Custom Property for Freezing Point

1 Open a new or existing System object.
2 In the MATLAB Editor, select Insert Property > Custom Property.
3 In the Custom Property dialog box, under System Object Attributes, select

Nontunable. Under MATLAB Property Attributes, select Constant. Leave
GetAccess as public. SetAccess is grayed out because properties of type constant
can not be set using System object methods.

The dialog box now looks as shown:

19-58

 Insert System Object Code Using MATLAB Editor

4 To insert the property into the System object code, click Insert.

 properties(Nontunable, Constant)

 Property

 end

5 Replace Property with your property.

 properties(Nontunable, Constant)

 FreezingPointFahrenheit = 32;

 end

Define Input Size As Locked

1 Open a new or existing System object.

19-59

19 Define New System Objects

2 In the MATLAB Editor, select Insert Method > Lock input size.

The MATLAB Editor inserts this code into the System object:

 function flag = isInputSizeLockedImpl(obj,index)

 % Return true if input size is not allowed to change while

 % system is running

 flag = true;

 end

Related Examples
• “Analyze System Object Code” on page 19-61

19-60

 Analyze System Object Code

Analyze System Object Code

In this section...

“View and Navigate System object Code” on page 19-61
“Example: Go to StepImpl Method Using Analyzer” on page 19-61

View and Navigate System object Code

View and navigate System object code using the Analyzer.

The Analyzer displays all elements in your System object code.

• Navigate to a specific input, output, property, state, or method by clicking the name of
that element.

• Expand or collapse element sections with the arrow buttons.
• Identify access levels for properties and custom methods with the + (public), #

(protected), and – (private) symbols.

Example: Go to StepImpl Method Using Analyzer

1 Open an existing System object.
2 Select Analyze.
3 Click stepImpl.

19-61

19 Define New System Objects

The cursor in the MATLAB Editor window jumps to the stepImpl method.

19-62

 Analyze System Object Code

Related Examples
• “Insert System Object Code Using MATLAB Editor” on page 19-54

19-63

19 Define New System Objects

Define System Object for Use in Simulink

In this section...

“Develop System Object for Use in System Block” on page 19-64
“Define Block Dialog Box for Plot Ramp” on page 19-65

Develop System Object for Use in System Block

You can develop a System object for use in a System block and interactively preview the
block dialog box. This feature requires Simulink.

With the System Block editing options, the MATLAB Editor inserts predefined code
into the System object. This coding technique helps you create and modify your System
object faster and increases accuracy by reducing typing errors.

Using these options, you can also:

• View and interact with the block dialog design as you define the System object.
• Add dialog customization methods. If the block dialog box is open when you make

changes, the block dialog design preview updates the display on saving the file.
• Add icon methods. However, these elements display only on the MATLAB System

Block in Simulink, not in the Preview Dialog Box.

19-64

 Define System Object for Use in Simulink

Define Block Dialog Box for Plot Ramp

1 Create a System object and name it PlotRamp. This name becomes the block dialog
box title. Save the System object.

2 Add a comment that contains the block description.

% Display a button to launch a plot figure.

This comment becomes the block parameters dialog box description, under the block
title.

3 Select System Block > Preview Block Dialog. The block dialog box displays as
you develop the System object.

19-65

19 Define New System Objects

4 Add a ramp limit by selecting Insert Property > Numeric. Then change the
property name and set the value to 10.

 properties (Nontunable)

 RampLimit = 10;

 end

5 Using the System Block menu, insert the getPropertyGrouplsImpl method.

 methods(Access = protected, Static)

 function group = getPropertyGroupsImpl

 % Define property section(s) for System block dialog

 group = matlab.system.display.Section(mfilename('class'));

 end

 end

6 Add code to create the group for the visualize action..

 methods(Access = protected, Static)

 function group = getPropertyGroupsImpl

 % Define property section(s) for System block dialog

 group = matlab.system.display.Section(mfilename('class'));

 group.Actions = matlab.system.display.Action(@(~,obj)...

 visualize(obj),'Label','Visualize');

 end

 end

7 Add a function that adds code to display the Visualize button on the dialog box.

 methods

 function visualize(obj)

 figure;

19-66

 Define System Object for Use in Simulink

 d = 1:obj.RampLimit;

 plot(d);

 end

 end

8 As you add elements to the System block definition, save your file. Observe the
effects of your code additions to the System block definition.

The System Block menu also displays checks next to the methods you have
implemented, which can help you track your development.

19-67

19 Define New System Objects

The class definition file now has all the code necessary for the PlotRamp System object.

classdef PlotRamp < matlab.System

 % Display a button to launch a plot figure.

 properties (Nontunable)

 RampLimit = 10;

 end

 methods(Static, Access=protected)

 function group = getPropertyGroupsImpl

 group = matlab.system.display.Section(mfilename('class'));

 group.Actions = matlab.system.display.Action(@(~,obj)...

 visualize(obj),'Label','Visualize');

 end

 end

 methods

 function visualize(obj)

 figure;

 d = 1:obj.RampLimit;

 plot(d);

 end

 end

end

19-68

 Define System Object for Use in Simulink

After you complete your System block definition, save it, and then load it into a MATLAB
System block in Simulink.

Related Examples
• “Insert System Object Code Using MATLAB Editor” on page 19-54

19-69

19 Define New System Objects

Use Enumerations in System Objects

Enumerated data is data that is restricted to a finite set of values. To use enumerated
data in a System object in MATLAB or Simulink, you refer to them in your System
objectclass definition and define your enumerated class in a separate class definition file.

For a System object that will be used in MATLAB only, see “Enumerations”.

For a System object that will be used in a MATLAB System block in Simulink, see
“Enumerated Data”

Enumerations can derive from any integer type smaller than or equal to an int32. For
example,

classdef Bearing < uint8

 enumeration

 North (0)

 East (90)

 South (180)

 West (270)

 end

end

Enumerations can also derive from Simulink.IntEnumType. You use this type of
enumeration to add attributes, such as custom headers, to the input or output of the
MATLAB System block. See “Use Enumerated Data in Simulink Models”.

19-70

 Use Global Variables in System Objects

Use Global Variables in System Objects

Global variables are variables that you can access in other MATLAB functions or
Simulink blocks.

System Object Global Variables in MATLAB

For System objects that are used only in MATLAB, you define global variables in System
object class definition files in the same way that you define global variables in other
MATLAB code (see “Global Variables”).

System Object Global Variables in Simulink

For System objects that are used in the MATLAB System block in Simulink, you also
define global variables as you do in MATLAB. However, to use global variables in
Simulink, you need to declare global variables in the , , or method if you have declared
them in methods called by stepImpl, updateImpl, or outputImpl, respectively.

You set up and use global variables for the MATLAB System block in the same way as
you do for the MATLAB Function block (see “Data Stores” and “Share Data Globally”).
Like the MATLAB Function block, you must also use variable name matching with a
Data Store Memory block to use global variables in Simulink.

For example, this class definition file defines a System object that increments the first
row of a matrix by 1 at each time step. You must include if the class file is P-coded.

classdef GlobalSysObjMatrix < matlab.System

 methods (Access = protected)

 function y = stepImpl(obj)

 global B;

 B(1,:) = B(1,:)+1;

 y = B;

 end

 % Include getGlobalNamesImpl only if the class file is P-coded.

 function globalNames = getGlobalNamesImpl(~)

 globalNames = {‘B'};

 end

 end

end

19-71

19 Define New System Objects

This model includes the GlobalSysObjMatrix object in a MATLAB System block and
the associated Data Store Memory block.

19-72

 Use Global Variables in System Objects

19-73

19 Define New System Objects

19-74

